×

Outlier robust model-assisted small area estimation. (English) Zbl 1334.62107

Summary: Small area estimation with M-quantile models was proposed by R. Chambers and N. Tzavidis [Biometrika 93, No. 2, 255–268 (2006; Zbl 1153.62004)]. The key target of this approach to small area estimation is to obtain reliable and outlier robust estimates avoiding at the same time the need for strong parametric assumptions. This approach, however, does not allow for the use of unit level survey weights, making questionable the design consistency of the estimators unless the sampling design is self-weighting within small areas. In this paper, we adopt a model-assisted approach and construct design consistent small area estimators that are based on the M-quantile small area model. Analytic and bootstrap estimators of the design-based variance are discussed. The proposed estimators are empirically evaluated in the presence of complex sampling designs.

MSC:

62J05 Linear regression; mixed models
62D05 Sampling theory, sample surveys

Citations:

Zbl 1153.62004

Software:

sampling
Full Text: DOI

References:

[1] Antal, E. and Tillé, Y. (2011). A direct bootstrap method for complex sampling designs from a finite population. Journal of the American Statistical Association106, 534-543. · Zbl 1232.62030
[2] Battese, G. E., Harter, R. M. and Fuller, W. A. (1988). An error components model for prediction of county crop area using survey and satellite data. Journal of the American Statistical Association83, 28-36.
[3] Beaumont, J. F. and Alavi, A. (2004). Robust generalized regression estimation. Survey Methodology30, 195-208.
[4] Breckling, J. and Chambers, R. (1988). M‐quantiles. Biometrika75, 761-771. · Zbl 0653.62024
[5] Brown, G., Chambers, R., Heady, P. and Heasman, D. (2001). Evaluation of small area estimation method – an application to unemployment estimates from the UK LFS. Proceedings of Statistics Canada Symposium, 2001.
[6] Chambers, R. (1986). Outlier robust finite population estimation. Journal of the American Statistical Association81, 1063-1069. · Zbl 0608.62010
[7] Chambers, R. and Dunstan, R. (1986). Estimating distribution functions from survey data. Biometrika73, 597-604. · Zbl 0614.62005
[8] Chambers, R. and Tzavidis, N. (2006). M‐quantile models for small area estimation. Biometrika93, 255-268. · Zbl 1153.62004
[9] Chambers, R., Chandra, H., Salvati, N. and Tzavidis, N. (2013). Outlier robust small area estimation. Journal of the Royal Statistical Society, Series B75, 5, 1-28.
[10] Deville, J. C. and Tillé, Y. (1998). Unequal probability sampling without replacement through a splitting method. Biometrika85, 89-101. · Zbl 1067.62508
[11] Estevao, V. M. and Särndal, C. E (2004). Borrowing strength is not the best technique within a wide class of design‐consistent domain estimators. Journal of Official Statistics20, 645-669.
[12] Fabrizi, E., Salvati, N. and Pratesi, M. (2012). Constrained small area estimators based on M‐quantile methods. Journal of Official Statistics28, 89-106.
[13] Huber, P. J. and Ronchetti, E. M. (2009). Robust Statistics. Wiley, New York, NY. · Zbl 1276.62022
[14] Isaki, C. T. and Fuller, W. A. (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association77, 89-96. · Zbl 0511.62016
[15] Jiang, J. and Lahiri, P. (2006a). Mixed model prediction and small area estimation (with discussion). TEST15, 1-96. · Zbl 1149.62320
[16] Jiang, J. and Lahiri, P. (2006b). Estimation of finite population domain means: a model‐assisted empirical best prediction approach. Journal of the American Statistical Association101, 301-311. · Zbl 1118.62303
[17] Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica101, 33-50. · Zbl 0373.62038
[18] Kocic, P., Chambers, R., Breckling, J. and Beare, S. (1997). A measure of production performance. Journal of Business and Economics Statistics15, 445-451.
[19] Kott, P. (1989). Robust small domain estimation using random effects modelling. Survey Methodology15, 1-12.
[20] Lehtonen, R. and Veijanen, A. (1999). Domain estimation with logistic generalized regression and related estimators. IASS Satellite Conference on Small Area Estimation. Riga: Latvian Council of Science121-128.
[21] Lehtonen, R., Särndal, C. E. and Veijanen, A. (2003). The effect of model choice in estimation for domains, including small domains. Survey Methodology29, 33-44.
[22] Lehtonen, R. and Pahkinen, E. (2004). Practical Methods for Design and Analysis of Complex Surveys. Wiley, New York, NY.
[23] Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica55, 819-847. · Zbl 0625.62047
[24] Prasad, N. G. N. and Rao, J. N. K. (1999). On robust small area estimation using a simple random effects model. Survey Methodology25, 67-72.
[25] Rao, J. N. K., Kovar, J. G. and Mantel, H. J. (1990). On estimating distribution functions and quantiles from survey data using auxiliary information. Biometrika77, 365-375. · Zbl 0716.62013
[26] Rao, J. N. K. (1999). Some current trends in sample survey theory and methods. Sankhyā: The Indian Journal of Statistics, Series B61, 1-57. · Zbl 0972.62006
[27] Rao, J. N. K. (2003). Small Area Estimation. Wiley, New York, NY. · Zbl 1026.62003
[28] Särndal, C. E. (1982). Implications of survey design for generalized regression estimation of linear functions. Journal of Statistical Planning and Inference7, 155-170. · Zbl 0526.62008
[29] Särndal, C. E. (1984). Design‐consistent versus model‐dependent estimation for small domains. Journal of the American Statistical Association79, 624-631. · Zbl 0557.62008
[30] Särndal, C. E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer‐Verlag, New York, NY. · Zbl 0742.62008
[31] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, Hoboken, NJ. · Zbl 0538.62002
[32] Shao, J. and Tu, D. (1995). The Jackknife and the Bootstrap. Springer Verlag, New York, NY. · Zbl 0947.62501
[33] Sinha, S. K. and Rao, J. N. K. (2009). Robust small area estimation. The Canadian Journal of Statistics37, 381-399. · Zbl 1177.62076
[34] Tillé, Y. (2006). Sampling Algorithm, Springer Verlag, New York, NY. · Zbl 1099.62009
[35] Tillé, Y. and Matei, A. (2009). Package sampling functions for drawing and calibrating samples, downlodable at http://cran.r‐project.org/web/packages/sampling/.
[36] Tzavidis, N., Marchetti, S. and Chambers, R. (2010). Robust estimation of small‐area means and quantiles. The Australian and New Zealand Journal of Statistics52, 167-186. · Zbl 1337.62065
[37] Torabi, M. and Rao, J. N. K. (2010). Mean squared error estimators of small area means using survey weights. The Canadian Journal of Statistics38, 598-608. · Zbl 1349.62032
[38] You, Y. and Rao, J. N. K. (2002). A pseudo‐empirical best linear unbiased prediction approach to small area estimation using survey weights. The Canadian Journal of Statistics30, 431-439. · Zbl 1018.62008
[39] Wang, J. and Opsomer, J. D. (2011). On asymptotic normality and variance estimation for non differentiable survey estimators. Biometrika98, 91-106. · Zbl 1214.62011
[40] Welsh, A. H. and Ronchetti, E. (1998). Bias‐calibrated estimation from sample surveys containing outliers. Journal of the Royal Statistical Society, Series B60, 413-428. · Zbl 0953.62014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.