×

Bootstrapping probability-proportional-to-size samples via calibrated empirical population. (English) Zbl 1457.62044

Summary: A collection of six novel bootstrap algorithms, applied to probability-proportional-to-size samples, is explored for variance estimation, confidence interval and p-value production. Developed according to bootstrap fundamentals such as the mimicking principle and the plug-in rule, these algorithms make use of an empirical bootstrap population informed by sampled units each with assigned weight. Starting from the natural choice of Horvitz-Thompson (HT)-type weights, improvements based on calibration to known population features are fostered. Focusing on the population total as the parameter to be estimated and on the distribution of the HT estimator as the target of bootstrap estimation, simulation results are presented with the twofold objective of checking practical implementation and of investigating the statistical properties of the bootstrap estimates supplied by the algorithms explored.

MSC:

62D05 Sampling theory, sample surveys
Full Text: DOI

References:

[1] Särndal CE, Swensson B, Wretman J. Model assisted survey sampling. New York: Springer-Verlag; 1992. [Crossref], [Google Scholar] · Zbl 0742.62008
[2] Haziza D, Mecatti F, Rao JNK. Approximate variance estimators under the Rao-Sampford design. Metron. 2008;66:91-108. [Google Scholar] · Zbl 1151.62015
[3] Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979;7:1-26. doi: 10.1214/aos/1176344552[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0406.62024
[4] McCarthy PJ, Snowden CB. The bootstrap and finite population sampling. Vital Health Stat. 1985;95(2): 1-23. [Google Scholar]
[5] Rao JNK, Wu CFJ. Resampling inference with complex survey data. J Am Statist Assoc. 1988;83(401):231-241. doi: 10.1080/01621459.1988.10478591[Taylor & Francis Online], [Google Scholar] · Zbl 0654.62015
[6] Sitter RR. A resampling procedure for complex survey data. J Am Statist Assoc. 1992;87(419):755-765. doi: 10.1080/01621459.1992.10475277[Taylor & Francis Online], [Google Scholar] · Zbl 0760.62013
[7] Antal E, Tillé Y. A direct bootstrap method for complex sampling designs from a finite population. J Am Statist Assoc. 2011;106(494):534-543. doi: 10.1198/jasa.2011.tm09767[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1232.62030
[8] Beaumont JF, Patak Z. On the generalized bootstrap for sample surveys with special attention to Poisson sampling. Int Statist Rev. 2012;80(1):127-148. doi: 10.1111/j.1751-5823.2011.00166.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1418.62096
[9] Hall P. The bootstrap and Edgeworth expansion. New York: Springer-Verlag; 1992. [Crossref], [Google Scholar] · Zbl 0744.62026
[10] Bickel P, Freedman D. Asymptotic normality and the bootstrap in stratified sampling. Ann Stat. 1984;12:470-482. doi: 10.1214/aos/1176346500[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0542.62009
[11] Chao MT, Lo AY. A bootstrap method for finite population. Sankhyā Ser. A1985;47:399-405. [Google Scholar] · Zbl 0587.62031
[12] Gross ST. Median estimation in sample surveys. Proceedings of the Section on survey research, American Statistical Association. 1980; Houston, TX. p. 181-184. [Google Scholar]
[13] Booth JG, Butler RW, Hall P. Bootstrap methods for finite populations. J Am Statist Assoc. 1994;89:1282-1289. doi: 10.1080/01621459.1994.10476868[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0812.62006
[14] Holmberg A. A bootstrap approach to probability proportional to size sampling. Proceedings of section on survey research methods, American Statistical Association. 1998; Dallas, TX. p. 378-383. [Google Scholar]
[15] Chauvet G. Méthodes de bootstrap en population finie [dissertation]. Laboratoire de statistique denqueˆtes, CREST-ENSAI, Université de Rennes 2; 2007. Available from: http://tel.archives-ouvertes.fr/docs/0026/76/89/PDF/thesechauvet.pdf[Google Scholar]
[16] Barbiero A, Mecatti F. Bootstrap algorithms for variance estimation in π PS sampling. In: Mantovan P, Secchi P, editors. Complex data modeling and computationally intensive statistical methods. New York: Springer; 2010. p. 57-69. [Crossref], [Google Scholar]
[17] Wu C, Sitter RR. A model-calibration approach to using complete auxiliary information from survey data. J Am Statist Assoc. 2001;96(453):185-193. doi: 10.1198/016214501750333054[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1015.62005
[18] Deville J-C, Särndal C-E. Calibration estimators in survey sampling. J Am Statist Assoc. 1992;87(418):376-382. doi: 10.1080/01621459.1992.10475217[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0760.62010
[19] Wu C. Algorithms and R codes for the Pseudo empirical likelihood method in survey sampling. Surv Methodol. 2005;31(2):239-243. [Google Scholar]
[20] Manzi G, Mecatti F. Bootstrap algorithms for risk models with auxiliary variable and complex samples. Methodol Comput Appl Probab. 2009;11:21-27. doi: 10.1007/s11009-008-9072-8[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1293.62063
[21] Harms T, Duchesne P. On calibration estimation for quantiles. Surv Methodol. 2006;32(1):37-52. [Google Scholar]
[22] Rao JNK, Kovar JG, Mantel HJ. On estimating distribution functions and quantiles from survey data using auxiliary information. Biometrika. 1990;77(2):365-375. doi: 10.1093/biomet/77.2.365[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0716.62013
[23] Rao JNK. On two simple schemes of unequal probability sampling without replacement. J Indian Statist Assoc. 1965;3:173-180. [Google Scholar]
[24] Sampford MR. On sampling without replacement with unequal probabilities of selection. Biometrika. 1967;54(3/4):499-513. doi: 10.2307/2335041[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[25] Manzi G, Barbiero A, Mecatti F. Bootstrapping under Rao-Sampford probability proportional to size sampling: computational aspects and application perspectives. Survey research methods and applications – proceedings of the second ITACOSM conference on survey methodology; 2011; Pisa, Italy. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.