×

Detecting vector charge with extreme mass ratio inspirals onto Kerr black holes. (English) Zbl 1528.83093


MSC:

83C57 Black holes
83C35 Gravitational waves
60G35 Signal detection and filtering (aspects of stochastic processes)
70M20 Orbital mechanics
35B20 Perturbations in context of PDEs
47A10 Spectrum, resolvent
78A35 Motion of charged particles
78A60 Lasers, masers, optical bistability, nonlinear optics

References:

[1] LIGO Scientific, Virgo Collaboration; Abbott, B. P., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[2] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.131103
[3] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X, 9 (2019) · doi:10.1103/PhysRevX.9.031040
[4] LIGO Scientific, Virgo Collaboration; Abbott, R., GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X, 11 (2021) · doi:10.1103/PhysRevX.11.021053
[5] LIGO Scientific, VIRGO Collaboration; Abbott, R., GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run (2021)
[6] LIGO Scientific, VIRGO, KAGRA Collaboration; Abbott, R., GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run (2021)
[7] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[8] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M_⊙, Astrophys. J. Lett., 892, L3 (2020) · doi:10.3847/2041-8213/ab75f5
[9] LIGO Scientific, KAGRA, VIRGO Collaboration; Abbott, R., Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences, Astrophys. J. Lett., 915, L5 (2021) · doi:10.3847/2041-8213/ac082e
[10] Danzmann, K., LISA: An ESA cornerstone mission for a gravitational wave observatory, Class. Quant. Grav., 14, 1399-1404 (1997) · doi:10.1088/0264-9381/14/6/002
[11] LISA Collaboration; Amaro-Seoane, Pau, Laser Interferometer Space Antenna (2017)
[12] TianQin Collaboration; Luo, Jun, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav., 33 (2016) · doi:10.1088/0264-9381/33/3/035010
[13] Hu, Wen-Rui; Wu, Yue-Liang, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev., 4, 685-686 (2017) · doi:10.1093/nsr/nwx116
[14] Gong, Yungui; Luo, Jun; Wang, Bin, Concepts and status of Chinese space gravitational wave detection projects, Nature Astron., 5, 881-889 (2021) · doi:10.1038/s41550-021-01480-3
[15] TianQin Collaboration; Mei, Jianwei, The TianQin project: current progress on science and technology, PTEP, 2021 (2021) · doi:10.1093/ptep/ptaa114
[16] Ruan, Wen-Hong; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong, Taiji program: Gravitational-wave sources, Int. J. Mod. Phys. A, 35 (2020) · doi:10.1142/S0217751X2050075X
[17] LISA Collaboration; Seoane, Pau Amaro, Astrophysics with the Laser Interferometer Space Antenna, Living Rev. Rel., 26, 2 (2023) · doi:10.1007/s41114-022-00041-y
[18] LISA Collaboration; Arun, K. G., New horizons for fundamental physics with LISA, Living Rev. Rel., 25, 4 (2022) · doi:10.1007/s41114-022-00036-9
[19] Amaro-Seoane, Pau; Gair, Jonathan R.; Freitag, Marc; Coleman Miller, M.; Mandel, Ilya; Cutler, Curt J.; Babak, Stanislav, Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals, Class. Quant. Grav., 24, R113-R169 (2007) · Zbl 1128.85300 · doi:10.1088/0264-9381/24/17/R01
[20] Babak, Stanislav; Gair, Jonathan; Sesana, Alberto; Barausse, Enrico; Sopuerta, Carlos F.; Berry, Christopher P. L.; Berti, Emanuele; Amaro-Seoane, Pau; Petiteau, Antoine; Klein, Antoine, Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.103012
[21] Barack, Leor; Cutler, Curt, LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.082005
[22] Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R., Augmented kludge waveforms for detecting extreme-mass-ratio inspirals, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.044005
[23] Gair, Jonathan R.; Tang, Christopher; Volonteri, Marta, LISA extreme-mass-ratio inspiral events as probes of the black hole mass function, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.104014
[24] Holz, Daniel E.; Hughes, Scott A., Using gravitational-wave standard sirens, Astrophys. J., 629, 15-22 (2005) · doi:10.1086/431341
[25] MacLeod, Chelsea L.; Hogan, Craig J., Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.043512
[26] Laghi, Danny; Tamanini, Nicola; Del Pozzo, Walter; Sesana, Alberto; Gair, Jonathan; Babak, Stanislav; Izquierdo-Villalba, David, Gravitational-wave cosmology with extreme mass-ratio inspirals, Mon. Not. Roy. Astron. Soc., 508, 4512-4531 (2021) · doi:10.1093/mnras/stab2741
[27] LISA Cosmology Working Group Collaboration; Auclair, Pierre, Cosmology with the Laser Interferometer Space Antenna (2022)
[28] eLISA Collaboration; Seoane, Pau Amaro, The Gravitational Universe (2013)
[29] Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph, New Probe of Dark-Matter Properties: Gravitational Waves from an Intermediate-Mass Black Hole Embedded in a Dark-Matter Minispike, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.221101
[30] Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph, Gravitational waves as a probe of dark matter minispikes, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.044045
[31] Barausse, Enrico; Cardoso, Vitor; Pani, Paolo, Can environmental effects spoil precision gravitational-wave astrophysics?, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.104059
[32] Yue, Xiao-Jun; Han, Wen-Biao, Gravitational waves with dark matter minispikes: the combined effect, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.064003
[33] Yue, Xiao-Jun; Han, Wen-Biao; Chen, Xian, Dark matter: an efficient catalyst for intermediate-mass-ratio-inspiral events, Astrophys. J., 874, 34 (2019) · doi:10.3847/1538-4357/ab06f6
[34] Berry, Christopher P. L.; Hughes, Scott A.; Sopuerta, Carlos F.; Chua, Alvin J. K.; Heffernan, Anna; Holley-Bockelmann, Kelly; Mihaylov, Deyan P.; Miller, M. Coleman; Sesana, Alberto, The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy (2019)
[35] Hannuksela, Otto A.; Ng, Kenny C. Y.; Li, Tjonnie G. F., Extreme dark matter tests with extreme mass ratio inspirals, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103022
[36] Destounis, Kyriakos; Suvorov, Arthur G.; Kokkotas, Kostas D., Testing spacetime symmetry through gravitational waves from extreme-mass-ratio inspirals, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.064041
[37] Burton, Justin Y. J.; Osburn, Thomas, Reissner-Nordström perturbation framework with gravitational wave applications, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.104030
[38] Torres, Theo; Dolan, Sam R., Electromagnetic self-force on a charged particle on Kerr spacetime: Equatorial circular orbits, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.024024
[39] Barausse, Enrico, Prospects for Fundamental Physics with LISA, Gen. Rel. Grav., 52, 81 (2020) · doi:10.1007/s10714-020-02691-1
[40] Cardoso, Vitor; Maselli, Andrea, Constraints on the astrophysical environment of binaries with gravitational-wave observations, Astron. Astrophys., 644, A147 (2020) · doi:10.1051/0004-6361/202037654
[41] Maselli, Andrea; Franchini, Nicola; Gualtieri, Leonardo; Sotiriou, Thomas P., Detecting scalar fields with Extreme Mass Ratio Inspirals, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.141101
[42] Maselli, Andrea; Franchini, Nicola; Gualtieri, Leonardo; Sotiriou, Thomas P.; Barsanti, Susanna; Pani, Paolo, Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals, Nature Astron., 6, 464-470 (2022) · doi:10.1038/s41550-021-01589-5
[43] Guo, Hong; Liu, Yunqi; Zhang, Chao; Gong, Yungui; Qian, Wei-Liang; Yue, Rui-Hong, Detection of scalar fields by extreme mass ratio inspirals with a Kerr black hole, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.024047
[44] Zhang, Chao; Gong, Yungui; Liang, Dicong; Wang, Bin, Gravitational waves from eccentric extreme mass-ratio inspirals as probes of scalar fields (2022)
[45] Barsanti, Susanna; Franchini, Nicola; Gualtieri, Leonardo; Maselli, Andrea; Sotiriou, Thomas P., Extreme mass-ratio inspirals as probes of scalar fields: Eccentric equatorial orbits around Kerr black holes, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.044029
[46] Barsanti, Susanna; Maselli, Andrea; Sotiriou, Thomas P.; Gualtieri, Leonardo, Detecting massive scalar fields with Extreme Mass-Ratio Inspirals (2022)
[47] Cardoso, Vitor; Destounis, Kyriakos; Duque, Francisco; Macedo, Rodrigo Panosso; Maselli, Andrea, Black holes in galaxies: Environmental impact on gravitational-wave generation and propagation, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.L061501
[48] Dai, Ning; Gong, Yungui; Jiang, Tong; Liang, Dicong, Intermediate mass-ratio inspirals with dark matter minispikes, Phys. Rev. D, 106 (2022) · Zbl 1519.83018 · doi:10.1103/PhysRevD.106.064003
[49] Jiang, Tong; Dai, Ning; Gong, Yungui; Liang, Dicong; Zhang, Chao, Constraint on Brans-Dicke theory from intermediate/extreme mass ratio inspirals, JCAP, 12 (2022) · Zbl 1519.83018 · doi:10.1088/1475-7516/2022/12/023
[50] Zhang, Chao; Gong, Yungui, Detecting electric charge with extreme mass ratio inspirals, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.124046
[51] Gao, Qing, Constraint on the mass of graviton with gravitational waves, Sci. China Phys. Mech. Astron., 66 (2023) · doi:10.1007/s11433-022-1971-9
[52] Gao, Qing; You, Yujie; Gong, Yungui; Zhang, Chao; Zhang, Chunyu, Testing alternative theories of gravity with space-based gravitational wave detectors (2022)
[53] Destounis, Kyriakos; Kulathingal, Arun; Kokkotas, Kostas D.; Papadopoulos, Georgios O., Gravitational-wave imprints of compact and galactic-scale environments in extreme-mass-ratio binaries, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.084027
[54] Liang, Dicong; Xu, Rui; Mai, Zhan-Feng; Shao, Lijing, Probing vector hair of black holes with extreme-mass-ratio inspirals, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.044053
[55] Cardoso, Vitor; Macedo, Caio F. B.; Vicente, Rodrigo, Eccentricity evolution of compact binaries and applications to gravitational-wave physics, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.023015
[56] Liu, Lang; Christiansen, Øyvind; Guo, Zong-Kuan; Cai, Rong-Gen; Kim, Sang Pyo, Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103520
[57] Liu, Lang; Christiansen, Øyvind; Ruan, Wen-Hong; Guo, Zong-Kuan; Cai, Rong-Gen; Kim, Sang Pyo, Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: elliptical orbits on a cone, Eur. Phys. J. C, 81, 1048 (2021) · doi:10.1140/epjc/s10052-021-09849-4
[58] Cardoso, Vitor; Destounis, Kyriakos; Duque, Francisco; Panosso Macedo, Rodrigo; Maselli, Andrea, Gravitational Waves from Extreme-Mass-Ratio Systems in Astrophysical Environments, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.241103
[59] Sotiriou, Thomas P.; Zhou, Shuang-Yong, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.251102
[60] Silva, Hector O.; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P.; Berti, Emanuele, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.131104
[61] Doneva, Daniela D.; Yazadjiev, Stoytcho S., New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories, Phys. Rev. Lett., 120 (2018) · Zbl 1536.83099 · doi:10.1103/PhysRevLett.120.131103
[62] Antoniou, G.; Bakopoulos, A.; Kanti, P., Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.131102
[63] Yunes, Nicolas; Pani, Paolo; Cardoso, Vitor, Gravitational Waves from Quasicircular Extreme Mass-Ratio Inspirals as Probes of Scalar-Tensor Theories, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.102003
[64] Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo, Floating and sinking: The Imprint of massive scalars around rotating black holes, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.241101
[65] Gibbons, G. W., Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes, Commun. Math. Phys., 44, 245-264 (1975) · doi:10.1007/BF01609829
[66] Eardley, D. M.; Press, W. H., Astrophysical processes near black holes, Ann. Rev. Astron. Astrophys., 13, 381-422 (1975) · doi:10.1146/annurev.aa.13.090175.002121
[67] R.S. Hanni, Limits on the charge of a collapsed object, Phys. Rev. D25 (1982) 2509. · doi:10.1103/physrevd.25.2509
[68] Joshi, P. S.; Narlikar, J. V., Black hole physics in globally hyperbolic spacetimes, Pramana, 18, 385-396 (1982) · doi:10.1007/BF02848041
[69] Gong, Yi; Cao, Zhoujian; Gao, He; Zhang, Bing, On neutralization of charged black holes, Mon. Not. Roy. Astron. Soc., 488, 2722-2731 (2019) · doi:10.1093/mnras/stz1904
[70] Bekenstein, Jacob D., Hydrostatic Equilibrium and Gravitational Collapse of Relativistic Charged Fluid Balls, Phys. Rev. D, 4, 2185-2190 (1971) · doi:10.1103/PhysRevD.4.2185
[71] , Relativistic charged spheres, Mon. Not. Roy. Astron. Soc.277 (1995) L17. · doi:10.1093/mnras/277.1.l17
[72] de Felice, Fernando; Liu, Si-ming; Yu, Yun-qiang, Relativistic charged spheres. 2. Regularity and stability, Class. Quant. Grav., 16, 2669-2680 (1999) · Zbl 0961.83021 · doi:10.1088/0264-9381/16/8/307
[73] Ivanov, B. V., Static charged perfect fluid spheres in general relativity, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.104001
[74] Majumdar, S. D., A class of exact solutions of Einstein’s field equations, Phys. Rev., 72, 390-398 (1947) · doi:10.1103/PhysRev.72.390
[75] J.L. Zhang, W.Y. Chau and T.Y. Deng, The influence of a net charge on the critical mass of a neutron star, Astrophys. Space Sci.88 (1982) 81. · Zbl 0528.76054 · doi:10.1007/bf00648990
[76] Anninos, Peter; Rothman, Tony, Instability of extremal relativistic charged spheres, Phys. Rev. D, 65 (2002) · Zbl 0962.83510 · doi:10.1103/PhysRevD.65.024003
[77] Bonnor, W. B.; Wickramasuriya, S. B. P., Are very large gravitational redshifts possible, Mon. Not. Roy. Astron. Soc., 170, 643-649 (1975)
[78] Ray, Subharthi; Espindola, Aquino L.; Malheiro, Manuel; Lemos, Jose P. S.; Zanchin, Vilson T., Electrically charged compact stars and formation of charged black holes, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.084004
[79] Wald, Robert M., Black hole in a uniform magnetic field, Phys. Rev. D, 10, 1680-1685 (1974) · doi:10.1103/PhysRevD.10.1680
[80] Cardoso, Vitor; Macedo, Caio F. B.; Pani, Paolo; Ferrari, Valeria, Black holes and gravitational waves in models of minicharged dark matter, JCAP, 05 (2016) · doi:10.1088/1475-7516/2016/05/054
[81] Bolton, James S.; Caputo, Andrea; Liu, Hongwan; Viel, Matteo, Comparison of Low-Redshift Lyman-α Forest Observations to Hydrodynamical Simulations with Dark Photon Dark Matter, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.211102
[82] Liu, Lang; Kim, Sang Pyo, Merger rate of charged black holes from the two-body dynamical capture, JCAP, 03 (2022) · Zbl 1504.83022 · doi:10.1088/1475-7516/2022/03/059
[83] Liu, Lang; Guo, Zong-Kuan; Cai, Rong-Gen; Kim, Sang Pyo, Merger rate distribution of primordial black hole binaries with electric charges, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.043508
[84] Jai-akson, Puttarak; Chatrabhuti, Auttakit; Evnin, Oleg; Lehner, Luis, Black hole merger estimates in Einstein-Maxwell and Einstein-Maxwell-dilaton gravity, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.044031
[85] Christiansen, Øyvind; Beltrán Jiménez, Jose; Mota, David F., Charged Black Hole Mergers: Orbit Circularisation and Chirp Mass Bias, Class. Quant. Grav., 38 (2021) · Zbl 1481.83032 · doi:10.1088/1361-6382/abdaf5
[86] Bozzola, Gabriele; Paschalidis, Vasileios, General Relativistic Simulations of the Quasicircular Inspiral and Merger of Charged Black Holes: GW150914 and Fundamental Physics Implications, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.041103
[87] Zi, Tieguang; Zhou, Ziqi; Wang, Hai-Tian; Li, Peng-Cheng; Zhang, Jian-dong; Chen, Bin, Analytic kludge waveforms for extreme-mass-ratio inspirals of a charged object around a Kerr-Newman black hole, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.023005
[88] Teukolsky, Saul A., Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J., 185, 635-647 (1973) · doi:10.1086/152444
[89] Press, William H.; Teukolsky, Saul A., Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric, Astrophys. J., 185, 649-674 (1973) · doi:10.1086/152445
[90] Teukolsky, S. A.; Press, W. H., Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation, Astrophys. J., 193, 443-461 (1974) · doi:10.1086/153180
[91] Newman, E. T.; Penrose, R., Note on the Bondi-Metzner-Sachs group, J. Math. Phys., 7, 863-870 (1966) · doi:10.1063/1.1931221
[92] Goldberg, J. N.; MacFarlane, A. J.; Newman, E. T.; Rohrlich, F.; Sudarshan, E. C. G., Spin s spherical harmonics and edth, J. Math. Phys., 8, 2155 (1967) · Zbl 0155.57402 · doi:10.1063/1.1705135
[93] Black Hole Perturbation Toolkit, http://bhptoolkit.org/.
[94] Detweiler, Steven L., Black Holes and Gravitational Waves. I. Circular Orbits About a Rotating Hole, Astrophys. J., 225, 687-693 (1978) · doi:10.1086/156529
[95] Hughes, Scott A., The Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational wave emission, Phys. Rev. D, 61 (2000) · doi:10.1103/PhysRevD.65.069902
[96] Jefremov, Paul I.; Tsupko, Oleg Yu.; Bisnovatyi-Kogan, Gennady S., Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.124030
[97] Berti, Emanuele; Buonanno, Alessandra; Will, Clifford M., Estimating spinning binary parameters and testing alternative theories of gravity with LISA, Phys. Rev. D, 71 (2005) · Zbl 1081.83529 · doi:10.1103/PhysRevD.71.084025
[98] Lindblom, Lee; Owen, Benjamin J.; Brown, Duncan A., Model Waveform Accuracy Standards for Gravitational Wave Data Analysis, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.124020
[99] Chatziioannou, Katerina; Klein, Antoine; Yunes, Nicolás; Cornish, Neil, Constructing Gravitational Waves from Generic Spin-Precessing Compact Binary Inspirals, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.104004
[100] Hughes, Scott A., Computing radiation from Kerr black holes: Generalization of the Sasaki-Nakamura equation, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.044029
[101] Piovano, Gabriel Andres; Maselli, Andrea; Pani, Paolo, Extreme mass ratio inspirals with spinning secondary: a detailed study of equatorial circular motion, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.024041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.