×

Singular perturbations and torsional wrinkling in a truncated hemispherical thin elastic shell. (English) Zbl 1495.74018

Summary: The work described in this paper is concerned with providing a rational asymptotic analysis for the partial wrinkling bifurcation of a thin elastic hemispherical segment in which the upper rim experiences in-plane circular shearing relative to the other circular edge. The mathematical structure of the associated complex-valued boundary eigenvalue problem is revealed by using the method of matched asymptotic expansions. Our key result is a three-term asymptotic formula for the critical load in terms of a suitable small parameter proportional to the ratio between the thickness and the radius of the shell. Comparisons of this formula with direct numerical simulations provide further insight into the range of validity of the results derived herein.

MSC:

74G60 Bifurcation and buckling
74K25 Shells
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics

References:

[1] Bickell, M. B.; Ruiz, C., Pressure Vessel Design and Analysis (1967), London: Macmillan Education, London · doi:10.1007/978-1-349-00129-3
[2] Blum, R.E., McComb, H.G.: Buckling of an equatorial segment of a spherical shell loaded by its own weight. Technical Note NASA-TN-D-4921 (1968)
[3] Blumenthal, O.; Hobson, E. W.; Love, A. E.H., Über asymptotische Integration von Differentialgleichungen mit Anwendung auf die Berechnung von Spannungen in Kugelschalen, Proceedings of the Fifth International Congress of Mathematicians, 319-327 (1913), Cambridge: Cambridge University Press, Cambridge · JFM 44.0386.01
[4] Blumenthal, O., Über asymptotische Integration von Differentialgleichungen mit Anwendung auf die Berechnung von Spannungen in Kugelschalen, Z. Angew. Math. Phys., 62, 343-358 (1914)
[5] Boyd, J. P., Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles (2014), Philadelphia: SIAM, Philadelphia · Zbl 1311.65047 · doi:10.1137/1.9781611973525
[6] Brush, D. O.; Almroth, B. O., Buckling of Bars, Plates and Shells (1975), New York: McGraw-Hill, New York · Zbl 0352.73040 · doi:10.1115/1.3423755
[7] Bushnell, D., Computerized Buckling Analysis of Shells (1989), Dordrecht: Kluwer Academic, Dordrecht
[8] Cheng, H., Advanced Analytic Methods in Applied Mathematics, Science, and Engineering (2007), Boston: LuBan Press, Boston
[9] Collatz, L., Eigenwertprobleme und ihre Numerische Behandlung (1948), New York: Chelsea Publishing Company, New York · Zbl 0061.18102
[10] Coman, C. D., Some applications of the WKB method to the wrinkling of bi-annular plates in tension, Acta Mech., 224, 399-423 (2013) · Zbl 1401.74104 · doi:10.1007/s00707-012-0761-6
[11] Coman, C. D., Bifurcation instabilities in finite bending of circular cylindrical shells, Int. J. Eng. Sci., 119, 249-264 (2017) · Zbl 1423.74421 · doi:10.1016/j.ijengsci.2017.06.022
[12] Coman, C. D., Tensile bifurcations in a truncated hemispherical thin elastic shell, Z. Angew. Math. Phys., 71, 178 (2020) · Zbl 1451.74158 · doi:10.1007/s00033-020-01394-6
[13] Coman, C. D.; Bassom, A. P., On the wrinkling of a pres-stressed annular thin film in tension, J. Mech. Phys. Solids, 55, 1601-1617 (2007) · Zbl 1176.74114 · doi:10.1016/j.jmps.2007.01.006
[14] Coman, C. D.; Bassom, A. P., Boundary layers and stress concentration in the circular shearing of thin films, Proc. R. Soc. Lond. A, 463, 3037-3053 (2007) · Zbl 1130.74016
[15] Coman, C. D.; Bassom, A. P., Wrinkling of pre-stressed annular thin films under azimuthal shearing, Math. Mech. Solids, 13, 513-531 (2008) · Zbl 1175.74051 · doi:10.1177/1081286507077107
[16] Coman, C. D.; Bassom, A. P., Asymptotic limits and wrinkling patterns in a pressurised shallow spherical cap, Int. J. Non-Linear Mech., 81, 8-18 (2016) · doi:10.1016/j.ijnonlinmec.2015.12.004
[17] Coman, C. D.; Bassom, A. P., On the role of in-plane compliance in edge wrinkling, J. Elast., 126, 135-154 (2017) · Zbl 1354.74079 · doi:10.1007/s10659-016-9584-3
[18] Coman, C. D.; Bassom, A. P., Wrinkling structures at the rim of an initially stretched circular thin plate subjected to transverse pressure, SIAM J. Appl. Math., 78, 1009-1029 (2018) · Zbl 1390.74069 · doi:10.1137/17M1155193
[19] Coman, C. D.; Haughton, D. M., Localized wrinkling instabilities in radially stretched annular thin films, Acta Mech., 185, 179-200 (2006) · Zbl 1106.74026 · doi:10.1007/s00707-005-0307-2
[20] Coman, C. D.; Matthews, M. T.; Bassom, A. P., Asymptotic phenomena in pressurised thin films, Proc. R. Soc. Lond. A, 471 (2015) · Zbl 1371.74204
[21] Du, Y.; Sun, L.; Li, S.; Li, Y., Vibration analysis of truncated spherical shells under various edge constraints, Thin-Walled Struct., 147 (2020) · doi:10.1016/j.tws.2019.106544
[22] Fedoryuk, M. V., Asymptotic Analysis (1993), New York: Springer, New York · Zbl 0782.34001 · doi:10.1007/978-3-642-58016-1
[23] Feschenko, S. F.; Shkil’, N. I.; Nikolenko, L. D., Asymptotic Methods in the Theory of Linear Differential Equations (1967), New York: American Elsevier Company, New York · Zbl 0153.40501
[24] Flügge, W., Stresses in Shells (1973), Berlin: Springer, Berlin · Zbl 0257.73056 · doi:10.1007/978-3-642-88291-3
[25] Fu, Y. B., Some asymptotic results concerning the buckling of a spherical shell of arbitrary thickness, Int. J. Non-Linear Mech., 33, 1111-1122 (1998) · Zbl 1342.74063 · doi:10.1016/S0020-7462(97)00075-9
[26] Fu, Y. B.; Sanjarani Pour, M., WKB method with repeated roots and its application to the buckling analysis of an everted cylindrical tube, SIAM J. Appl. Math., 62, 1856-1871 (2002) · Zbl 1053.74016 · doi:10.1137/S0036139901389641
[27] Geckler, J. W., Über die Festigkeit achsensymmetrischer Schalen (1926), Berlin: VDI-Verlag, Berlin · JFM 52.0826.05
[28] Geckler, J. W., Zur Theorie der Elastizität flacher rotationssymmetrischer Schalen, Ing.-Arch., 276, 255-270 (1930) · JFM 56.1239.02 · doi:10.1007/BF02079933
[29] Gill, S. S., The Stress Analysis of Pressure Vessels and Pressure Vessels Components (1970), Oxford: Pergamon Press, Oxford
[30] Gould, S. H., Variational Methods for Eigenvalue Problems (1995), New York: Dover, New York
[31] Grigolyuk, E. I.; Kabanov, V. V., Stability of Shells (1978), Moscow: Nauka, Moscow
[32] Havers, A., Asymptotische Biegetheorie der unbelasteten Kugelschale, Ing.-Arch., 6, 282-312 (1935) · JFM 61.0889.03 · doi:10.1007/BF02084691
[33] Hetenyi, M., Spherical shells subjected to axial symmetrical bending, International Association for Bridge and Structural Engineering, Publication, 173-185 (1938)
[34] Hutchinson, J. W., Knockdown factors for buckling of cylindrical and spherical shells subject to reduced bi-axial membrane stress, Int. J. Solids Struct., 47, 1443-1448 (2010) · Zbl 1193.74045 · doi:10.1016/j.ijsolstr.2010.02.009
[35] Jawad, M. H., Stress in ASME Pressure Vessels, Boiler and Nuclear Components (2018), New York: Wiley, New York
[36] Kalamkarov, A. L.; Andrianov, I. I., Analytical solution of the stability problem for the truncated hemispherical shell under tensile loading, Math. Probl. Eng., 2018 (2018) · Zbl 1427.74069 · doi:10.1155/2018/5260639
[37] Lagerstrom, P. A., Matched Asymptotic Expansions: Ideas and Techniques (1988), New York: Springer, New York · Zbl 0666.34064 · doi:10.1007/978-1-4757-1990-1
[38] Langer, R. E., On the asymptotic solutions of ordinary differential equations with reference to the Stokes’ phenomenon about a singular point, Trans. Am. Math. Soc., 37, 397-416 (1935) · Zbl 0011.30101
[39] Leckie, F. A., Asymptotic solutions for the spherical shell subjected to axially symmetric loading, Symposium on Nuclear Reactor Containment Buildings and Pressure Vessels, The Royal College of Science and Technology, 286-297 (1960), London: Butterworths, London
[40] Leckie, F. A., Localized loads applied to spherical shells, J. Mech. Eng. Sci., 3, 111-118 (1961) · doi:10.1243/JMES_JOUR_1961_003_016_02
[41] Li, H., Free vibration of a high-speed rotating truncated spherical shell, J. Vib. Acoust., 135 (2013) · doi:10.1115/1.4023144
[42] Lin, C. C., The Theory of Hydrodynamic Stability (1955), Cambridge: Cambridge University Press, Cambridge · Zbl 0068.39202
[43] Meissner, E., Das Elastizitätsproblem dünner Schalen von Ringflächen, Kugel- oder Kegelform, Phys. Z., 14, 343-349 (1913) · JFM 44.0930.01
[44] Meksyn, D. M., New Methods in Laminar Boundary-Layer Theory (1961), Oxford: Pergamon Press, Oxford
[45] Mikulas, M.M.: Behaviour of a flat stretched membrane wrinkled by the rotation of an attached hub. Technical Note NASA-TN-D-2456 (1964)
[46] Mow, C. C.; Sadowski, M. A., Determination of the critical torque inducing buckling in a twisted spherical shell subject to internal or external pressure, Proceedings of Army Science Conference, U.S. Military Academy, 129-139 (1962), Arlington: Armed Services Technical Information Agency, Arlington
[47] Mushtari, Kh. M.; Galimov, K. Z., Non-linear Theory of Thin Elastic Shells (1957), Kazan, Russia: Tatknigoizdat, Kazan, Russia
[48] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), New York: Wiley, New York · Zbl 0418.70001
[49] Niordson, F. I., Free vibrations of thin elastic spherical shells, Int. J. Solids Struct., 20, 667-687 (1984) · Zbl 0542.73083 · doi:10.1016/0020-7683(84)90023-4
[50] Niordson, F. I., Shell Theory (1985), Amsterdam: North-Holland, Amsterdam · Zbl 0566.73053
[51] Olver, F. W.J., The asymptotic solution of linear differential equations of the second order for large values of a parameter and the asymptotic expansion of Bessel functions of large order, Philos. Trans. R. Soc. Lond. A, 247, 307-327 (1954) · Zbl 0070.30801 · doi:10.1098/rsta.1954.0020
[52] Pedersen, P. T.; Jensen, J. J., Buckling of spherical cargo tanks for liquid natural gas, Trans. R. Inst. Nav. Archit., 118, 193-205 (1976)
[53] Pedersen, P. T.; Jensen, J. J., Buckling behaviour of imperfect spherical shells subjected to different load conditions, Thin-Walled Struct., 23, 41-55 (1995) · doi:10.1016/0263-8231(95)00003-V
[54] Pogorelov, A. V., Geometric Theory of Shell Stability (1966), Moscow: Nauka, Moscow
[55] Pogorelov, A. V., Bendings of Surfaces and Stability of Shells (1988), Providence: Am. Math. Soc., Providence · Zbl 0656.73026 · doi:10.1090/mmono/072
[56] Reissner, H. J., Spannungen in Kugelschalen (Kuppeln), H. Müller-Breslau Festschrift, 181-193 (1912), Leipzig: A. Kröner, Leipzig · JFM 43.0940.01
[57] Reissner, E.; Den Hartog, J. P.; Peters, H., On tension field theory, Proceedings of the 5th International Congress of Applied Mechanics, 88-92 (1939), New York: Wiley, New York · JFM 65.1466.01
[58] Reissner, E.; Churchill, R. V.; Reissner, E.; Taub, A. H., On axisymmetric deformations of thin shells of revolution, Proceedings of the Third Symposium in Applied Mathematics. Vol III: Elasticity, 27-52 (1950), New York: McGraw-Hill, New York · Zbl 0041.53201
[59] Sanders, J. L. Jr., Nonlinear theories for thin shells, Q. Appl. Math., 6, 21-36 (1963) · doi:10.1090/qam/147023
[60] Sano, A.; Izumi, N.; Matsubara, N.; Fujikubo, M., Estimation of elastic buckling strength of a non-spherical tank in the partially filled condition, Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017: June 25-30 2017 (2017), New York: American Society of Mechanical Engineers, New York
[61] Singer, J.; Arbocz, J.; Weller, T., Buckling Experiments (2002), New York: Wiley, New York
[62] Singh, A. V.; Mirza, S., Asymmetric modes and associated eigenvalues for spherical shells, J. Press. Vessel Technol., 107, 77-82 (1985) · doi:10.1115/1.3264409
[63] Steele, C. R.; Nemat-Nasser, S., Application of the WKB method in solid mechanics, Mechanics Today, 243-295 (1976), New York: Pergamon Press, New York · Zbl 0351.34034 · doi:10.1016/B978-0-08-019882-8.50013-X
[64] Tall, M.; Hariri, S.; Le Grognec, P.; Simonet, Y., Elastoplastic buckling and collapse of spherical shells under combined loadings, Thin-Walled Struct., 123, 114-125 (2018) · doi:10.1016/j.tws.2017.10.041
[65] Tovstik, P. E.; Smirnov, A. L., Asymptotic Methods in the Buckling of Elastic Shells (2001), Singapore: World Scientific, Singapore · Zbl 1066.74500 · doi:10.1142/4790
[66] Troger, H.; Steindl, A., Nonlinear Stability and Bifurcation Theory (1991), Wien: Springer, Wien · Zbl 0743.93076 · doi:10.1007/978-3-7091-9168-2
[67] van der Heijden, A. M.A., W.T. Koiter’s Elastic Stability and Structures (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1241.74002 · doi:10.1017/CBO9780511546174
[68] Ventsel, E.; Krauthammer, T., Thin Plates and Shells: Theory, Analysis, and Applications (2001), New York: Marcel Dekker, Inc., New York · doi:10.1201/9780203908723
[69] Vlasov, W. S., Allgemeine Schalentheories und ihre Anwendung der Technik (1958), Berlin: Akademie-Verlag, Berlin · Zbl 0081.39501
[70] Wasow, W., Asymptotic Expansions for Ordinary Differential Equations (1965), New York: Interscience Publishers, New York · Zbl 0133.35301
[71] Yao, J. C., Buckling of a truncated hemisphere under axial tension, AIAA J., 1, 2316-2319 (1963) · doi:10.2514/3.2059
[72] Yiniy, Z., Torsional buckling of spherical shells under circumferential shear loads, Appl. Math. Mech., 20, 426-432 (1999) · Zbl 0945.74641 · doi:10.1007/BF02458570
[73] Zingoni, A., Shell Structures in Civil and Mechanical Engineering: Theory and Analysis (2017), New York: ICE Publishing, New York · doi:10.1680/ssicame.60289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.