×

A new analytical method for spherical thin shells’ axisymmetric vibrations. (English) Zbl 1459.74071

Summary: In order to improve the spherical thin shells’ vibrations analysis, we introduce a new analytical method. In this method, we take into consideration the terms of the inertial couples in the stress couples’ differential equations of motion. These inertial couples are omitted in the theories provided by Naghdi-Kalnins and Kunieda. The results show that the current method can solve the axisymmetric vibrations’ equations of elastic thin spherical shells. In this paper, we focus on verifying the current method, particularly for free vibrations with free edge and clamped edge boundary conditions. To check the validity and accuracy of the current analytical method, the natural frequencies determined by this method are compared with those available in the literature and those obtained by a finite element calculation.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells

Software:

APDL; ANSYS
Full Text: DOI

References:

[1] Glück, M.; Breuer, M.; Durst, F.; Halfmann, A.; Rank, E., Computation of fluid-structure interaction on lightweight structures, Journal of Wind Engineering and Industrial Aerodynamics, 89, 14-15, 1351-1368 (2001) · doi:10.1016/s0167-6105(01)00150-7
[2] Crupi, V.; Epasto, G.; Guglielmino, E., Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam, Marine Structures, 30, 74-96 (2013) · doi:10.1016/j.marstruc.2012.11.002
[3] Rex, J.; Kameshwari, B., Studies on pumice lightweight aggregate concrete with quarry dust using mathematical modeling aid of ACO techniques, Advances in Materials Science and Engineering, 2016 (2016) · doi:10.1155/2016/9583757
[4] Wallach, M. L., Smart sensor systems—submarine marking and sonar detection (2010), US Patent 7,839,305
[5] Caresta, M.; Kessissoglou, N. J., Acoustic signature of a submarine hull under harmonic excitation, Applied Acoustics, 71, 1, 17-31 (2010) · doi:10.1016/j.apacoust.2009.07.008
[6] Kalamkarov, A. L.; Andrianov, I. I., Analytical solution of the stability problem for the truncated hemispherical shell under tensile loading, Mathematical Problems in Engineering, 2018 (2018) · Zbl 1427.74069 · doi:10.1155/2018/5260639
[7] Nassit, M.; Berbia, H., Structures simulation of curved sensor based on PVDF for fetal heart rate monitoring, Proceedings of the 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA)
[8] Li, H.; Pang, F.; Chen, H., A semi-analytical approach to analyze vibration characteristics of uniform and stepped annular-spherical shells with general boundary conditions, European Journal of Mechanics-A/Solids, 74, 48-65 (2019) · Zbl 1406.74477 · doi:10.1016/j.euromechsol.2018.10.017
[9] Razavi, H.; Babadi, A. F.; Tadi Beni, Y., Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory, Composite Structures, 160, 1299-1309 (2017) · doi:10.1016/j.compstruct.2016.10.056
[10] Kiani, Y., Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions, Composite Structures, 159, 368-381 (2017) · doi:10.1016/j.compstruct.2016.09.079
[11] Léonard, F.; Lanteigne, J.; Lalonde, S.; Turcotte, Y., Free-vibration behaviour of a cracked cantilever beam and crack detection, Mechanical Systems and Signal Processing, 15, 3, 529-548 (2001) · doi:10.1006/mssp.2000.1337
[12] Akgöz, B.; Civalek, Ö., Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Composite Structures, 98, 314-322 (2013) · doi:10.1016/j.compstruct.2012.11.020
[13] Yang, Z.; Guo, S.; Yang, J.; Hu, Y., On the eigenvalue problem for free vibrations of a piezoelectric/piezomagnetic body, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 734-737 (2008)
[14] Giunta, G.; Koutsawa, Y.; Belouettar, S.; Hu, H., Static, free vibration and stability analysis of three-dimensional nano-beams by atomistic refined models accounting for surface free energy effect, International Journal of Solids and Structures, 50, 9, 1460-1472 (2013) · doi:10.1016/j.ijsolstr.2013.01.025
[15] Pang, F.; Li, H.; Cui, J.; Du, Y.; Gao, C., Application of flügge thin shell theory to the solution of free vibration behaviors for spherical-cylindrical-spherical shell: a unified formulation, European Journal of Mechanics-A/Solids, 74, 381-393 (2019) · Zbl 1406.74316 · doi:10.1016/j.euromechsol.2018.12.003
[16] Kiani, Y.; Eslami, M. R., The GDQ approach to thermally nonlinear generalized thermoelasticity of a hollow sphere, International Journal of Mechanical Sciences, 118, 195-204 (2016) · doi:10.1016/j.ijmecsci.2016.09.019
[17] Sammoura, F.; Akhbari, S.; Lin, L., An analytical solution for curved piezoelectric micromachined ultrasonic transducers with spherically shaped diaphragms, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 9, 1533-1544 (2014) · doi:10.1109/tuffc.2014.3067
[18] Javani, M.; Kiani, Y.; Sadighi, M.; Eslami, M. R., Nonlinear vibration behavior of rapidly heated temperature-dependent FGM shallow spherical shells, AIAA Journal, 57, 9, 4071-4084 (2019) · doi:10.2514/1.j058240
[19] Chen, X.; Ye, K., Free vibration analysis for shells of revolution using an exact dynamic stiffness method, Mathematical Problems in Engineering, 2016 (2016) · Zbl 1400.74033 · doi:10.1155/2016/4513520
[20] Kiani, Y.; Sadighi, M.; Eslami, M. R., Dynamic analysis and active control of smart doubly curved FGM panels, Composite Structures, 102, 205-216 (2013) · doi:10.1016/j.compstruct.2013.02.031
[21] Love, A. E. H., The small free vibrations and deformation of a thin elastic shell, Philosophical Transactions of the Royal Society of London A, 491-546 (1888) · JFM 20.1075.01
[22] Batoz, J. L.; Dhatt, G., Poutres et Plaques (1993), Paris, France: Hermès, Paris, France
[23] Naz, R.; Mahomed, F., Dynamic euler-Bernoulli beam equation: classification and reductions, Mathematical Problems in Engineering, 2015 (2015) · Zbl 1394.74085 · doi:10.1155/2015/520491
[24] Reissner, E., Thin-Shell Structures: Theory, Experiment, and Design (1974), Upper Saddle River, NJ, USA: Prentice-Hall, Upper Saddle River, NJ, USA
[25] Mindlin, R., Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, Journal of Applied Mechanics, 18, 31-38 (1951) · Zbl 0044.40101
[26] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics, A69-A77 (1945) · Zbl 0063.06470
[27] Reissner, E., Reflections on the Theory of Elastic Plates (1985)
[28] Naghdi, P.; Sneddon, I. N., Foundations of elastic shell theory, Progress in Solid Mechanics, 4 (1963), North-Holland, Netherlands · Zbl 0116.15902
[29] Kraus, H., Thin Elastic Shells (1967) · Zbl 0266.73052
[30] Timoshenko, S. P., Résistance des matériaux (1968)
[31] Reddy, J. N.; Liu, C. F., A higher-order shear deformation theory of laminated elastic shells, International Journal of Engineering Science, 23, 3, 319-330 (1985) · Zbl 0559.73072 · doi:10.1016/0020-7225(85)90051-5
[32] Naghdi, P. M.; Kalnins, A., On vibrations of elastic spherical shells, Journal of Applied Mechanics, 29, 1, 65-72 (1962) · Zbl 0114.17403 · doi:10.1115/1.3636499
[33] Kunieda, H., Solutions of free vibrations of spherical shells : Part 3 natural frequencies and modes in axi and anti-symmetric state, Transactions of the Architectural Institute of Japan, 325, 57-66 (1983) · doi:10.3130/aijsaxx.325.0_57
[34] Kunieda, H., Flexural axisymmetric free vibrations of a spherical dome: exact results and approximate solutions, Journal of Sound and Vibration, 92, 1, 1-10 (1984) · Zbl 0527.73054 · doi:10.1016/0022-460x(84)90368-7
[35] Perrone, N.; Kao, R., A general finite difference method for arbitrary meshes, Computers & Structures, 5, 1, 45-57 (1975) · doi:10.1016/0045-7949(75)90018-8
[36] Finlayson, B. A., The Method of Weighted Residuals and Variational Principles (2013), Delhi, India: SIAM, Delhi, India
[37] Gould, S. H., Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein, and Aronszajn (2012), Chelmsford, MA, USA: Courier Corporation, Chelmsford, MA, USA
[38] Zienkiewicz, O. C.; Morice, P., The Finite Element Method in Engineering Science (1971), London, UK: McGraw-Hill, London, UK · Zbl 0237.73071
[39] El Harif, A., Étude par la méthode des éléments finis de l’effet de cisaillement transverse dans les plaques et les coques de revolution; Mémoire de thèse de doctorat d’état. (1988), Rabat, Morocco: Faculty of Science, Mohammed V University, Rabat, Morocco, Ph.D. thesis
[40] Batoz, J. L.; Dhatt, G., Modélisation des Structures par Éléments Finis Volume 3 Coques (1992), Paris, France: HERMES, Paris, France · Zbl 0831.73003
[41] Jebur, Q. H., Dynamic analysis of thin composite cylindrical and spherical shells, Al-Khwarizmi Engineering Journal, 4, 69-75 (2008)
[42] Du, Y.; Pang, F.; Sun, L.; Li, H., A unified formulation for dynamic behavior analysis of spherical cap with uniform and stepped thickness distribution under different edge constraints, Thin-Walled Structures, 146, 106445 (2020) · doi:10.1016/j.tws.2019.106445
[43] Bryan, A., Free vibration of doubly curved thin shells, Journal of Vibration and Acoustics, 140 (2018)
[44] Reddy, J. N., Theory and Analysis of Elastic Plates and Shells (2006), Boca Raton, FL, USA: CRC Press, Boca Raton, FL, USA
[45] Ansys, I., ANSYS Mechanical APDL Element Reference (2011), Canonsburg, PA, USA: ANSYS, Inc., Canonsburg, PA, USA
[46] Ansys, I., Theory reference for the mechanical APDL and mechanical applications, Southpointe Release, 12 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.