×

Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms. (English) Zbl 07736923

Summary: The principal aim of this work is to provide a family of unisolvent and minimal physical degrees of freedom, called weights, for Nédélec second family of finite elements. Such elements are thought of as differential forms \(P_r \Lambda^k(T)\) whose coefficients are polynomials of degree \(r\). In this paper we confine ourselves in the two dimensional case \(\mathbb{R}^2\), as in this framework the Five Lemma offers a neat and elegant treatment avoiding computations on the middle space. The majority of definitions and constructions are meaningful for \(n > 2\) as well and, when possible, they are thus given in such a generality, although more complicated techniques shall be invoked to replace the graceful role of the Five Lemma. In particular, we use techniques of homological algebra to obtain degrees of freedom for the whole diagram \[ \mathcal{P}_r \Lambda^0 (T) \to \mathcal{P}_{r-1} \Lambda^1 (T) \to \mathcal{P}_{r-2} \Lambda^2 (T), \] being \(T\) a 2-simplex of \(\mathbb{R}^2\). This work pairs its companions recently appeared for Nédélec first family of finite elements.

MSC:

65D05 Numerical interpolation
65D99 Numerical approximation and computational geometry (primarily algorithms)
53A70 Discrete differential geometry

Software:

MFEM

References:

[1] R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications. Vol. 75, Springer Science & Business Media (2012).
[2] A. Alonso Rodrguez, L. Bruni Bruno and F. Rapetti, Minimal sets of unisolvent weights for high order whitney forms on simplices, in Numerical Mathematics and Advanced Applications ENUMATH 2019. Springer (2021) 195-203. · Zbl 1470.65192 · doi:10.1007/978-3-030-55874-1_18
[3] A. Alonso Rodríguez, L. Bruni Bruno and F. Rapetti, Flexible weights for high order face based finite element interpolation. Submitted (2022).
[4] A. Alonso Rodríguez, L. Bruni Bruno and F. Rapetti, Towards nonuniform distributions of unisolvent weights for Whitney finite element spaces on simplices: the edge element case. Calcolo 59 (2022). · Zbl 1501.65100
[5] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina and S. Zampini, MFEM: a modular finite element methods library. Comput. Math. App. 81 (2021) 42-74. Development and Application of Open-source Software for Problems with Numerical PDEs. · Zbl 1524.65001
[6] A. Apozyan, Ǵ. Avagyan and G. Ktryan, On the Gasca-Maeztu conjecture in ℝ^3. East J. Approx. 16 (2010) 25-33. · Zbl 1321.51014
[7] D. Arnold, R. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1-155. · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[8] V. Bayramyan, H. Hakopian and S. Toroyan, A simple proof of the Gasca-Maeztu conjecture for n = 4. Jaen J. Approx. 7 (2015) 137-147. · Zbl 1379.41001
[9] M. Bonazzoli and F. Rapetti, High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality. Numer. Algor. 74 (2017) 111-136. · Zbl 1360.78045 · doi:10.1007/s11075-016-0141-8
[10] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity. Edge Elements. Academic Press Inc., San Diego, CA (1998). · Zbl 0945.78001
[11] A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. IEEE Trans. Magn. 36 (2000) 861-867.
[12] F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Mathem. 47 (1985) 217-235. · Zbl 0599.65072 · doi:10.1007/BF01389710
[13] L. Bruni Bruno, Weights as degrees of freedoom for high order Whitney finite elements. Ph.D. thesis, University of Trento (2022).
[14] J.M. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation. RACSAM. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. 95 (2001) 145-153. · Zbl 1013.41001
[15] S.H. Christiansen, A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18 (2008) 739-757. · Zbl 1153.65005
[16] S.H. Christiansen, Foundations of finite element methods for wave equations of Maxwell type, in Applied Wave Mathematics. Springer (2009) 335-393. · Zbl 1191.74047 · doi:10.1007/978-3-642-00585-5_17
[17] S.H. Christiansen and F. Rapetti, On high order finite element spaces of differential forms. Math. Comput. 85 (2016) 517-548. · Zbl 1332.65163
[18] S. Christiansen, H. Munthe-Kaas and B. Owren, Topics in structure preserving discretization. Acta Numer. 20 (2011) 1-119. · Zbl 1233.65087 · doi:10.1017/S096249291100002X
[19] K.C. Chung and T.H. Yao, On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal. 14 (1977) 735-743. · Zbl 0367.65003 · doi:10.1137/0714050
[20] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Co (1978). · Zbl 0383.65058
[21] C. de Boor, Multivariate polynomial interpolation: conjectures concerning GC-sets. Numer. Algorithms 45 (2007) 113-125. · Zbl 1123.41003 · doi:10.1007/s11075-006-9062-2
[22] M. Gasca and J.I. Maeztu, On Lagrange and Hermite interpolation in ℝ^k. Numer. Math 39 (1982) 1-14. · Zbl 0457.65004 · doi:10.1007/BF01399308
[23] J. Gopalakrishnan, L.E. Garca-Castillo and L.F. Demkowicz, Nédélec spaces in affine coordinates. Comput. Math. Appl. 49 (2005) 1285-1294. · Zbl 1078.65103 · doi:10.1016/j.camwa.2004.02.012
[24] H. Hakopian, K. Jetter and G. Zimmermann, The Gasca-Maeztu conjecture for n = 5. Numer. Math. 127 (2014) 685-713. · Zbl 1304.41002 · doi:10.1007/s00211-013-0599-4
[25] J. Harrison, Continuity of the integral as a function of the domain. J. Geometric Anal. 8 (1998) 769-795. · Zbl 0959.58008 · doi:10.1007/BF02922670
[26] A. Hatcher, Algebraic Topology. Cambridge Univ. Press, Cambridge (2000). · Zbl 1044.55001
[27] R. Hiptmair, Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. · Zbl 0938.65132 · doi:10.1090/S0025-5718-99-01166-7
[28] L. Kettunen, J. Lohi, J. Räbinä, S. Mönkölä and T. Rossi, Generalized finite difference schemes with higher order Whitney forms. ESAIM: Math. Model. Numer. Anal. 55 (2021) 1439-1459. · Zbl 07523504 · doi:10.1051/m2an/2021026
[29] J.M. Lee, Introduction to Smooth Manifolds. Vol. 218 of Graduate Texts in Mathematics, 2nd edition. Springer (2012). · Zbl 1258.53002 · doi:10.1007/978-1-4419-9982-5
[30] J. Lohi, Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus. Numer. Algorithms 91 (2022) 1261-1285. · Zbl 1504.65024 · doi:10.1007/s11075-022-01301-2
[31] J.-C. Nédélec, Mixed finite elements in ℝ^3. Numer. Math. 35 (1980) 315-342. · Zbl 0419.65069 · doi:10.1007/BF01396415
[32] J.-C. Nédélec, A new family of mixed finite elements in ℝ^3. Numer. Math. 50 (1986) 57-81. · Zbl 0625.65107 · doi:10.1007/BF01389668
[33] R.A. Nicolaides, On a class of finite elements generated by Lagrange interpolation. SIAM J. Numer. Anal. 9 (1972) 435-445. · Zbl 0282.65009 · doi:10.1137/0709039
[34] F. Rapetti and A. Bossavit, Whitney forms of higher degree. SIAM J. Numer. Anal. 47 (2009) 2369-2386. · Zbl 1195.78063
[35] T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques · doi:10.1109/20.767250
[36] H. Whitney, Geometric Integration Theory. Princeton University Press (1957). · Zbl 0083.28204
[37] E. Zampa, A. Alonso Rodríguez and F. Rapetti, Using the F.E.S. framework to derive new physical degrees of freedom for Nédélec spaces in two dimensions. Submitted (2021). · Zbl 1516.65144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.