×

Analysis of an exactly mass conserving space-time hybridized discontinuous Galerkin method for the time-dependent Navier-Stokes equations. (English) Zbl 1504.65206

Summary: We introduce and analyze a space-time hybridized discontinuous Galerkin method for the evolutionary Navier-Stokes equations. Key features of the numerical scheme include pointwise mass conservation, energy stability, and pressure robustness. We prove that there exists a solution to the resulting nonlinear algebraic system in two and three spatial dimensions, and that this solution is unique in two spatial dimensions under a small data assumption. A priori error estimates are derived for the velocity in a mesh-dependent energy norm.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations

Software:

MFEM

References:

[1] Ahmed, N., Higher-order discontinuous Galerkin time discretizations for the evolutionary Navier-Stokes equations, IMA J. Numer. Anal., 3113-3144 (2021) · Zbl 07528330 · doi:10.1093/imanum/draa053
[2] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny V. Dobrev, Y. Dudouit, A. Fisher, Tz. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini, MFEM: a modular finite element methods library, Comput. Math. App. 81 (2021), 42-74. · Zbl 1524.65001
[3] Arnold, D. N., A stable finite element for the Stokes equations, Calcolo, 337-344 (1985) (1984) · Zbl 0593.76039 · doi:10.1007/BF02576171
[4] Boffi, D., Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, xiv+685 pp. (2013), Springer, Heidelberg · Zbl 1277.65092 · doi:10.1007/978-3-642-36519-5
[5] Calo, V., Spectral approximation of elliptic operators by the hybrid high-order method, Math. Comp., 1559-1586 (2019) · Zbl 1422.65359 · doi:10.1090/mcom/3405
[6] Cesmelioglu, A., Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations, Math. Comp., 1643-1670 (2017) · Zbl 1422.65377 · doi:10.1090/mcom/3195
[7] Chrysafinos, K., Error estimates for the discontinuous Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 349-366 (2006) · Zbl 1112.65086 · doi:10.1137/030602289
[8] Chrysafinos, K., Lagrangian and moving mesh methods for the convection diffusion equation, M2AN Math. Model. Numer. Anal., 25-55 (2008) · Zbl 1136.65089 · doi:10.1051/m2an:2007053
[9] Chrysafinos, K., Discontinuous Galerkin approximations of the Stokes and Navier-Stokes equations, Math. Comp., 2135-2167 (2010) · Zbl 1273.76077 · doi:10.1090/S0025-5718-10-02348-3
[10] Cockburn, B., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 1319-1365 (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[11] Cockburn, B., The local discontinuous Galerkin method for the Oseen equations, Math. Comp., 569-593 (2004) · Zbl 1066.76036 · doi:10.1090/S0025-5718-03-01552-7
[12] Cockburn, B., Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal., 319-343 (2002) · Zbl 1032.65127 · doi:10.1137/S0036142900380121
[13] Crouzeix, M., Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Fran\c{c}aise Automat. Informat. Recherche Op\'{e}rationnelle S\'{e}r. Rouge, 33-75 (1973) · Zbl 0302.65087
[14] Di Pietro, D. A., Mathematical Aspects of Discontinuous Galerkin Methods, Math\'{e}matiques & Applications (Berlin) [Mathematics & Applications], xviii+384 pp. (2012), Springer, Heidelberg · Zbl 1231.65209 · doi:10.1007/978-3-642-22980-0
[15] Dolej\v{s}\'{\i }, V., Discontinuous Galerkin Method, Springer Series in Computational Mathematics, xiv+572 pp. (2015), Springer, Cham · Zbl 1401.76003 · doi:10.1007/978-3-319-19267-3
[16] Du, S., An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method, SpringerBriefs in Mathematics, x+124 pp. (2019), Springer, Cham · Zbl 1536.65001 · doi:10.1007/978-3-030-27230-2
[17] Dupont, T. F., A symmetric error estimate for Galerkin approximations of time-dependent Navier-Stokes equations in two dimensions, Math. Comp., 1919-1927 (2009) · Zbl 1215.76060 · doi:10.1090/S0025-5718-09-02243-1
[18] Feistauer, M., Space-time discontinuous Galerkin method for solving nonstationary convection-diffusion-reaction problems, Appl. Math., 197-233 (2007) · Zbl 1164.65469 · doi:10.1007/s10492-007-0011-8
[19] Feistauer, M., Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math., 251-288 (2011) · Zbl 1211.65125 · doi:10.1007/s00211-010-0348-x
[20] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Monographs in Mathematics, xiv+1018 pp. (2011), Springer, New York · Zbl 1245.35002 · doi:10.1007/978-0-387-09620-9
[21] P. Hood and C. Taylor, Navier-Stokes equations using mixed interpolation, Finite Element Methods in Flow Problems, University of Alabama in Huntsville Press, 1974, pp. 121-132.
[22] Horv\'{a}th, T. L., A locally conservative and energy-stable finite-element method for the Navier-Stokes problem on time-dependent domains, Internat. J. Numer. Methods Fluids, 519-532 (2019) · doi:10.1002/fld.4707
[23] Horv\'{a}th, T. L., An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains, J. Comput. Phys., 109577, 17 pp. (2020) · Zbl 1437.76021 · doi:10.1016/j.jcp.2020.109577
[24] Howell, J. S., Inf-sup conditions for twofold saddle point problems, Numer. Math., 663-693 (2011) · Zbl 1230.65128 · doi:10.1007/s00211-011-0372-5
[25] John, V., Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, xiii+812 pp. (2016), Springer, Cham · Zbl 1358.76003 · doi:10.1007/978-3-319-45750-5
[26] John, V., On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 492-544 (2017) · Zbl 1426.76275 · doi:10.1137/15M1047696
[27] Kirk, K. L. A., Analysis of a space-time hybridizable discontinuous Galerkin method for the advection-diffusion problem on time-dependent domains, SIAM J. Numer. Anal., 1677-1696 (2019) · Zbl 1427.65337 · doi:10.1137/18M1202049
[28] MFEM: modular finite element methods [software], mfem.org.
[29] Rhebergen, S., A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 4185-4204 (2012) · Zbl 1426.76298 · doi:10.1016/j.jcp.2012.02.011
[30] Rhebergen, S., The Courant-Friedrichs-Lewy (CFL) Condition. Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes, 45-63 (2013), Birkh\"{a}user/Springer, New York · Zbl 1273.65149 · doi:10.1007/978-0-8176-8394-8\_4
[31] Rhebergen, S., A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 339-358 (2013) · Zbl 1286.76033 · doi:10.1016/j.jcp.2012.08.052
[32] Rhebergen, S., Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations, J. Sci. Comput., 1936-1952 (2018) · Zbl 1407.65297 · doi:10.1007/s10915-018-0760-4
[33] Rhebergen, S., An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations, Comput. Methods Appl. Mech. Engrg., 112619, 18 pp. (2020) · Zbl 1441.76072 · doi:10.1016/j.cma.2019.112619
[34] Rhebergen, S., Analysis of a hybridized/interface stabilized finite element method for the Stokes equations, SIAM J. Numer. Anal., 1982-2003 (2017) · Zbl 1426.76299 · doi:10.1137/16M1083839
[35] Rhebergen, S., A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field, J. Sci. Comput., 1484-1501 (2018) · Zbl 1397.76077 · doi:10.1007/s10915-018-0671-4
[36] Sosa Jones, G., A space-time hybridizable discontinuous Galerkin method for linear free-surface waves, J. Sci. Comput., Paper No. 61, 38 pp. (2020) · Zbl 1456.65123 · doi:10.1007/s10915-020-01340-8
[37] Temam, R., Navier-Stokes Equations, Studies in Mathematics and its Applications, x+519 pp. (1979), North-Holland Publishing Co., Amsterdam-New York · Zbl 0426.35003
[38] Thom\'{e}e, V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, xii+370 pp. (2006), Springer-Verlag, Berlin · Zbl 1105.65102
[39] van der Vegt, J. J. W., A space-time discontinuous Galerkin method for the time-dependent Oseen equations, Appl. Numer. Math., 1892-1917 (2008) · Zbl 1148.76035 · doi:10.1016/j.apnum.2007.11.010
[40] van der Vegt, J. J. W., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation, J. Comput. Phys., 546-585 (2002) · Zbl 1057.76553
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.