×

Block preconditioning techniques for geophysical electromagnetics. (English) Zbl 1439.86003

Summary: Geophysical electromagnetic (EM) methods are an important technique for investigating the subsurface of the Earth, particularly when exploring for metallic ore deposits but also when delineating hydrocarbon reserves and in hydrological and geotechnical applications. Geophysical EM methods provide information on subsurface structure from depths of meters to hundreds of kilometers. Quantitative interpretation of the data from such EM methods, whether via trial-and-error forward modeling or inversion, requires the solution of many forward problems, simulating EM fields in candidate models of the Earth’s subsurface. In this paper, we consider the solution of the linear systems of equations that arise from finite-element discretization of such forward problems, in the setting where the Helmholtz decomposition of the electric field intensity is needed for the inversion process. In particular, a block preconditioning framework is proposed for the equivalent real form of the resulting modeling equations. Particular attention is paid to the interaction between inner and outer Krylov iterations in the resulting preconditioner, and numerical results are presented that explore the balance between time-to-solution and iterations of the outer Krylov method.

MSC:

86-08 Computational methods for problems pertaining to geophysics
65F08 Preconditioners for iterative methods
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
86A25 Geo-electricity and geomagnetism
Full Text: DOI

References:

[1] High Performance Preconditioners, http://www.llnl.gov/CASC/hypre.
[2] MFEM: Modular Finite Element Methods Library, https://doi.org/10.11578/dc.20171025.1248. · Zbl 1524.65001
[3] M. S. Aln\aes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS project version 1.5, Arch. Numer. Software, 3 (2015), https://doi.org/10.11588/ans.2015.100.20553.
[4] S. Ansari and C. G. Farquharson, Three dimensional finite element numerical modeling of geophysical electromagnetic data using vector and scalar potentials and unstructured grids, Geophysics, 79 (2014), pp. E149-E165.
[5] S. Ansari, C. G. Farquharson, and S. MacLachlan, A gauged finite-element potential formulation for accurate inductive and galvanic modelling of three-dimensional electromagnetic problems, Geophys. J. Internat., 210 (2017), pp. 105-129.
[6] D. Arnold, R. Falk, and R. Winther, Multigrid in \(H(div)\) and \(H({\rm curl})\), Numer. Math., 85 (2000), pp. 197-217. · Zbl 0974.65113
[7] S. R. Arridge, H. Egger, and M. Schlottbom, Preconditioning of complex symmetric linear systems with applications in optical tomography, Appl. Numer. Math., 74 (2013), pp. 35-48, https://doi.org/10.1016/j.apnum.2013.06.008. · Zbl 1302.65069
[8] D. V. Avdeev, Three-dimensional electromagnetic modelling and inversion from theory to practice, Surv. Geophys., 26 (2005), pp. 767-799.
[9] O. Axelsson, M. Neytcheva, and B. Ahmad, A comparison of iterative methods to solve complex valued linear algebraic systems, Numer. Algorithms, 66 (2014), pp. 811-841, https://doi.org/10.1007/s11075-013-9764-1. · Zbl 1307.65034
[10] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid smoothers for ultraparallel computing, SIAM J. Sci. Comput., 33 (2011), pp. 2864-2887, https://doi.org/10.1137/100798806. · Zbl 1237.65032
[11] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech. Report ANL-95/11, Revision 3.9, Argonne National Laboratory, 2018, http://www.mcs.anl.gov/petsc.
[12] S. J. Balch, Ni-Cu sulphide deposits with examples from Voisey’s Bay, in Geophysics in Mineral Exploration: Fundamentals and Case Histories, C. Lowe, M. D. Thomas, and W. A. Morris, eds., Geological Association of Canada, 1999.
[13] A. Bayliss, C. I. Goldstein, and E. Turkel, On accuracy conditions for the numerical computation of waves, J. Comput. Phys., 59 (1985), pp. 396-404. · Zbl 0647.65072
[14] M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), pp. 598-618, https://doi.org/10.1093/imanum/drm039. · Zbl 1145.65022
[15] D. V. Bor̈ner, Numerical modelling in geo-electromagnetics: Advances and challenges, Surv. Geophys., 31 (2010), pp. 225-245.
[16] D. Braess, Finite Elements, 2nd ed., Cambridge University Press, Cambridge, UK, 2001. · Zbl 0976.65099
[17] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, Texts in Appl. Math. 15, Springer-Verlag, New York, 1994. · Zbl 0804.65101
[18] M. Chanaud, L. Giraud, D. Goudin, J. J. Pesqué, and J. Roman, A parallel full geometric multigrid solver for time harmonic Maxwell problems, SIAM J. Sci. Comput., 36 (2014), pp. C119-C138, https://doi.org/10.1137/130909512. · Zbl 1298.65188
[19] S. Constable, Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75 (2010), pp. 75A67-75A81.
[20] D. Day and M. A. Heroux, Solving complex-valued linear systems via equivalent real formulations, SIAM J. Sci. Comput., 23 (2001), pp. 480-498. · Zbl 0992.65020
[21] K. Duckworth, T. D. Nichols, and E. S. Krebes, Examination of the relative influence of current gathering on fixed loop and moving source electromagnetic surveys, Geophysics, 66 (2001), pp. 1059-1066, https://doi.org/10.1190/1.1487053.
[22] H. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative solvers: With applications in incompressible fluid dynamics, Numer. Math. Sci. Comput., Oxford University Press, New York, 2005. · Zbl 1083.76001
[23] C. G. Farquharson, K. Duckworth, and D. W. Oldenburg, Comparison of integral equation and physical scale modeling of the electromagnetic responses of models with large conductivity contrasts, Geophysics, 71 (2006), pp. G169-G177, https://doi.org/10.1190/1.2210847.
[24] C. G. Farquharson and M. P. Miensopust, Three-dimensional finite element modelling of magnetotelluric data with a divergence correction, J. Appl. Geophys., 75 (2011), pp. 699-710, https://doi.org/10.1016/j.jappgeo.2011.09.025.
[25] D. G. Garrie, Dighem Survey for Diamond Fields Resources Inc. Archean Resources Ltd. Voiseys Bay, Labrador, Survey Report 1202, CGG Canada, 1995.
[26] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, An efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized sampling, SIAM J. Sci. Comput., 38 (2016), pp. S358-S384, https://doi.org/10.1137/15M1010117. · Zbl 1352.65092
[27] F. S. Grant and G. F. West, Interpretation Theory in Applied Geophysics, McGraw-Hill, New York, 1965.
[28] A. V. Grayver and M. Bürg, Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method, Geophys. J. Internat., 198 (2014), pp. 110-125, https://doi.org/10.1093/gji/ggu119.
[29] A. V. Grayver and T. V. Kolev, Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method, Geophysics, 80 (2015), pp. E277-E291.
[30] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36 (1999), pp. 204-225. · Zbl 0922.65081
[31] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509, https://doi.org/10.1137/060660588. · Zbl 1153.78006
[32] P. B. Hooghiemstra, D. R. van der Heul, and C. Vuik, Application of the shifted-Laplace preconditioner for iterative solution of a higher order finite element discretisation of the vector wave equation: First experiences, Appl. Numer. Math., 60 (2010), pp. 1157-1170, https://doi.org/10.1016/j.apnum.2010.07.004. · Zbl 1203.78044
[33] J. Hu, R. Tuminaro, P. Bochev, C. Garasi, and A. Robinson, Toward an h-independent algebraic multigrid method for Maxwell’s equations, SIAM J. Sci. Comput., 27 (2006), pp. 1669-1688, https://doi.org/10.1137/040608118. · Zbl 1136.76341
[34] H. Jahandari and C. G. Farquharson, Finite-volume modelling of geophysical electromagnetic data on unstructured grids using potentials, Geophys. J. Internat., 202 (2015), pp. 1859-1876.
[35] J. Jin, The Finite Element Method in Electromagnetics, 3rd ed., Wiley, New York, 2014. · Zbl 1419.78001
[36] T. V. Kolev and P. Vassilevski, Parallel auxiliary space AMG for H(curl) problems, J. Comput. Math., 27 (2009), pp. 604-623, https://doi.org/10.4208/jcm.2009.27.5.013. · Zbl 1212.65128
[37] D. Lahaye, H. De Gersem, S. Vandewalle, and K. Hameyer, Algebraic multigrid for complex symmetric systems, IEEE Trans. Magn., 36 (2000), pp. 1535-1538.
[38] A. Logg, K. B. Oelgaard, M. E. Rognes, and G. N. Wells, FFC: The FEniCS form compiler, in Automated Solution of Differential Equations by the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, A. Logg, K.-A. Mardal, and G. N. Wells, eds., Springer, New York, 2012, pp. 227-238. · Zbl 1247.65105
[39] A. Logg, G. N. Wells, and J. Hake, DOLFIN: A C++/python finite element library, in Automated Solution of Differential Equations by the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, A. Logg, K.-A. Mardal, and G. N. Wells, eds., Springer, 2012, pp. 175-224. · Zbl 1247.65105
[40] D. Loghin and A. J. Wathen, Schur complement preconditioning for elliptic systems of partial differential equations, Numer. Linear Algebra Appl., 10 (2003), pp. 423-443, https://doi.org/10.1002/nla.322. · Zbl 1071.65146
[41] S. P. MacLachlan and C. W. Oosterlee, Algebraic multigrid solvers for complex-valued matrices, SIAM J. Sci. Comput., 30 (2008), pp. 1548-1571. · Zbl 1165.65013
[42] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl, 18 (2011), pp. 1-40, https://doi.org/10.1002/nla.716. · Zbl 1249.65246
[43] L. Marioni, J. R. Alves Z., E. Hachem, and F. Bay, A new approach to solve complex valued systems arising from the solution of Maxwell equations in the frequency domain through real-equivalent formulations, Numer. Linear Algebra Appl., 24 (2017), e2079, https://doi.org/10.1002/nla.2079. · Zbl 1449.65041
[44] P. Monk, Finite-Element Methods for Maxwell’s Equations, Oxford University Press, New York, 2003. · Zbl 1024.78009
[45] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969-1972. · Zbl 0959.65063
[46] M. Nabighian, Comment on “Electromagnetic geophysics: Notes from the past and the road ahead” (Michael S. Zhdanov, 2010: Geophysics, 75 (5), 75A49-75A66), Geophysics, 77 (2012), pp. X3-X10.
[47] J. C. Nédélec, Mixed finite element in \(R^3\), Numer. Math., 35 (1980), pp. 315-341. · Zbl 0419.65069
[48] G. A. Newman, A review of high-performance computational strategies for modeling and imaging of electromagnetic induction data, Surv. Geophys., 35 (2014), pp. 85-100.
[49] S. Reitzinger, U. Schreiber, and U. van Rienen, Algebraic multigrid for complex symmetric matrices and applications, J. Comput. Appl. Math., 155 (2003), pp. 405-421. · Zbl 1020.65020
[50] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2003. · Zbl 1031.65046
[51] H. Si, Tetgen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator, http://tetgen.berlios.de, 2007.
[52] H. Si, TetGen, a delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., 41 (2015), pp. 11:1-11:36, https://doi.org/10.1145/2629697, http://doi.acm.org/10.1145/2629697. · Zbl 1369.65157
[53] B. Siemon, A. V. Christiansen, and E. Auken, A review of helicopter-borne electromagnetic methods for groundwater exploration, Near Surface Geophys., 7 (2009), pp. 629-646, https://doi.org/10.3997/1873-0604.2009043.
[54] R. Smith, Electromagnetic induction methods in mining geophysics from 2008 to 2012, Surv. Geophys., 35 (2014), pp. 123-156.
[55] R. Streich, Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land, Surv. Geophys., 37 (2016), pp. 47-80.
[56] P. W. Walker and G. F. West, A robust integral equation solution for electromagnetic scattering by a thin plate in conductive media, Geophysics, 56 (1991), pp. 1140-1152.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.