×

Goal-oriented adaptive space-time finite element methods for regularized parabolic \(p\)-Laplace problems. (English) Zbl 07863398

Summary: We consider goal-oriented adaptive space-time finite-element discretizations of the regularized parabolic \(p\)-Laplace problem on completely unstructured simplicial space-time meshes. The adaptivity is driven by the dual-weighted residual (DWR) method since we are interested in an accurate computation of some possibly nonlinear functionals at the solution. Such functionals represent goals in which engineers are often more interested than the solution itself. The DWR method requires the numerical solution of a linear adjoint problem that provides the sensitivities for the mesh refinement. This can be done by means of the same full space-time finite element discretization as used for the primal non-linear problems. The numerical experiments presented demonstrate that this goal-oriented, full space-time finite element solver efficiently provides accurate numerical results for different functionals.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics

References:

[1] Ahuja, K.; Endtmayer, B.; Steinbach, M. C.; Wick, T., Multigoal-oriented error estimation and mesh adaptivity for fluid-structure interaction, J. Comput. Appl. Math., 412, Article 114315 pp., 2022 · Zbl 1493.65186
[2] Alvarez-Aramberri, J.; Pardo, D.; Barucq, H., Inversion of magnetotelluric measurements using multigoal oriented hp-adaptivity, Proc. Comput. Sci., 18, 1564-1573, 2013
[3] Amestoy, P.; Duff, I.; L’Excellent, J.-Y.; Koster, J., Mumps: a general purpose distributed memorysparse solver, (Sørevik, T.; Manne, F.; Moe, R.; Gebremedhin, A., AppliedParallel Computing: New Paradigms for HPCin Industry and Academia. AppliedParallel Computing: New Paradigms for HPCin Industry and Academia, Lecture Notes in Computer Science., vol. 1947, 2001, Springer-Verlag: Springer-Verlag Berlin, Heidelberg)
[4] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Dobrev, J. C.V.; Dudouit, Y.; Fisher, A.; Kolev, T.; Pazner, W.; Stowell, M.; Tomov, V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: a modular finite element methods library, Comput. Math. Appl., 81, 42-74, 2021 · Zbl 1524.65001
[5] Balay, S.; Abhyankar, S.; Adams, M. F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.; Dalcin, L.; Dener, A.; Eijkhout, V.; Faibussowitsch, J.; Gropp, W. D.; Hapla, V.; Isaac, T.; Jolivet, P.; Karpeev, D.; Kaushik, D.; Knepley, M. G.; Kong, F.; Kruger, S.; May, D. A.; McInnes, L. C.; Mills, R. T.; Mitchell, L.; Munson, T.; Roman, J. E.; Rupp, K.; Sanan, P.; Sarich, J.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H.; Zhang, J., 2022, Argonne National Laboratory, PETSc/TAO users manual. Technical Report ANL-21/39 - Revision 3.18
[6] Bangerth, W.; Rannacher, R., Adaptive Finite Element Methods for Differential Equations, 2003, Birkhäuser Verlag: Birkhäuser Verlag Boston · Zbl 1020.65058
[7] Barrett, J.; Lui, W., Finite element approximation of the parabolic p-Laplacian, SIAM J. Numer. Anal., 31, 2, 413-428, 1994 · Zbl 0805.65097
[8] Becker, R.; Heuveline, V.; Rannacher, R., An optimal control approach to adaptivity in computational fluid mechanics, Int. J. Numer. Methods Fluids, 40, 1-2, 105-120, 2002 · Zbl 1047.76016
[9] Becker, R.; Rannacher, R., Weighted a posteriori error control in FE methods, (Bock, H. G.; etal., Lecture ENUMATH-95, Paris, Sept. 18-22, 1995, Proc. ENUMATH-97. Lecture ENUMATH-95, Paris, Sept. 18-22, 1995, Proc. ENUMATH-97, Heidelberg, Sept. 28 - Oct. 3, 1997, 1998, World Sci. Publ.: World Sci. Publ. Singapore), 621-637 · Zbl 0968.65083
[10] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10, 1-102, 2001 · Zbl 1105.65349
[11] Beuchler, S.; Endtmayer, B.; Lankeit, J.; Wick, T., Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model, Special Issue in Honor of Roland Glowinski. Special Issue in Honor of Roland Glowinski, C. R., Méc., 1-23, 2023
[12] Beuchler, S.; Endtmayer, B.; Wick, T., Goal oriented error control for stationary incompressible flow coupled to a heat equation, PAMM, 21, 1, Article e202100151 pp., 2021
[13] Biezuner, R. J.; Brown, J.; Ercole, G.; Martins, E. M., Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions, J. Sci. Comput., 52, 180-201, 2012 · Zbl 1255.65205
[14] Blum, H.; Schröder, A.; Suttmeier, F.-T., A posteriori estimates for fe-solutions of variational inequalities, (In Numerical Mathematics and Advanced Applications, 2003, Springer), 669-680 · Zbl 1045.65054
[15] Braack, M.; Ern, A., A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul., 1, 2, 221-238, 2003 · Zbl 1050.65100
[16] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 2008, Springer: Springer New York · Zbl 1135.65042
[17] Bruchhäuser, M. P.; Schwegler, K.; Bause, M., Numerical study of goal-oriented error control for stabilized finite element methods, (Chemnitz Fine Element Symposium, 2017, Springer), 85-106 · Zbl 1433.65280
[18] Cianchi, A.; Maz’ya, V., Second-order regularity for parabolic p-Laplace problems, J. Geom. Anal., 30, 1565-1583, 2020 · Zbl 1439.35204
[19] Davis, T., Direct Methods for Sparse Linear System, 2006, SIAM: SIAM Philadelphia · Zbl 1119.65021
[20] Deuflhard, P., Newton Methods for Nonlinear Problems, Springer Series in Computational Mathematics, vol. 35, 2011, Springer: Springer Berlin Heidelberg · Zbl 1226.65043
[21] Dıaz, J. I., Nonlinear Partial Differential Equations and Free Boundaries, 1985, Pitman Advanced Publishing Program: Pitman Advanced Publishing Program Boston-London-Melbourne · Zbl 0595.35100
[22] DiBenedetto, E., Degenerate Parabolic Equations, 1993, Springer: Springer New York · Zbl 0794.35090
[23] Dolejší, V.; Bartoš, O.; Roskovec, F., Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors, Comput. Math. Appl., 93, 178-198, 2021 · Zbl 1524.65791
[24] Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124, 1996 · Zbl 0854.65090
[25] Endtmayer, B., Multi-goal oriented a posteriori error estimates for nonlinear partial differential equations, 2020, Johannes Kelper University Linz, Available at
[26] Endtmayer, B.; Demircan, A.; Perevoznik, D.; Morgner, U.; Beuchler, S.; Wick, T., Adaptive finite element simulations of laser-heated material flow using a Boussinesq model, PAMM, 23, 1, Article e202200219 pp., 2023
[27] Endtmayer, B.; Langer, U.; Neitzel, I.; Wick, T.; Wollner, W., Mesh adaptivity and error estimates applied to a regularized p-Laplacian constrainted optimal control problem for multiple quantities of interest, PAMM, 19, 1, Article e201900231 pp., 2019
[28] Endtmayer, B.; Langer, U.; Neitzel, I.; Wick, T.; Wollner, W., Multigoal-oriented optimal control problems with nonlinear PDE constraints, Comput. Math. Appl., 79, 10, 3001-3026, 2020 · Zbl 1445.49012
[29] Endtmayer, B.; Langer, U.; Thiele, J. P.; Wick, T., Hierarchical DWR error estimates for the Navier-Stokes equations: h and p enrichment, (Numerical Mathematics and Advanced Applications ENUMATH 2019, 2021, Springer), 363-372 · Zbl 1470.65195
[30] Endtmayer, B.; Langer, U.; Wick, T., Multiple goal-oriented error estimates applied to 3d non-linear problems, PAMM, 18, 1, Article e201800048 pp., 2018
[31] Endtmayer, B.; Langer, U.; Wick, T., Multigoal-oriented error estimates for non-linear problems, J. Numer. Math., 27, 4, 215-236, 2019 · Zbl 1435.65200
[32] Endtmayer, B.; Langer, U.; Wick, T., Two-side a posteriori error estimates for the dual-weighted residual method, SIAM J. Sci. Comput., 42, 1, A371-A394, 2020 · Zbl 1440.65200
[33] Endtmayer, B.; Wick, T., A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems, Comput. Methods Appl. Math., 17, 4, 575-599, 2017 · Zbl 1434.65252
[34] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, 2004, Springer-Verlag: Springer-Verlag New York · Zbl 1059.65103
[35] Feischl, M.; Praetorius, D.; van der Zee, K. G., An abstract analysis of optimal goal-oriented adaptivity, SIAM J. Numer. Anal., 54, 3, 1423-1448, 2016 · Zbl 1382.65392
[36] Fick, P.; Brummelen, E.; Zee, K., On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction, Comput. Methods Appl. Mech. Eng., 199, 49-52, 3369-3385, 2010 · Zbl 1225.74085
[37] Fischer, H.; Roth, J.; Wick, T.; Chamoin, L.; Fau, A., MORe DWR: space-time goal-oriented error control for incremental POD-based ROM, 2023, arXiv preprint
[38] Granzow, B. N.; Seidl, D. T.; Bond, S. D., Linearization errors in discrete goal-oriented error estimation, 2023, arXiv preprint · Zbl 1539.65171
[39] Hackbusch, W., Multi-Grid Methods and Applications, Springer Series in Computational Mathematics, vol. 4, 1985, Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0595.65106
[40] Hartmann, R., Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM J. Sci. Comput., 31, 1, 708-731, 2008 · Zbl 1404.76163
[41] Hartmann, R.; Houston, P., Goal-oriented a posteriori error estimation for multiple target functionals, (Hyperbolic Problems: Theory, Numerics, Applications, 2003, Springer: Springer Berlin), 579-588 · Zbl 1064.65102
[42] Hirn, A., Finite element approximation of singular power-law systems, Math. Comput., 82, 283, 1247-1268, 2013 · Zbl 1336.76004
[43] Hirn, A.; Wollner, W., An optimal control problem for equations with p-structure and its finite element discretization, (Herzog, R.; Heinkenschloss, M.; Kalise, D.; Stadler, G.; Trélat, E., Optimization and Control for Partial Differential Equations. Optimization and Control for Partial Differential Equations, Radon Series on Computational and Applied Mathematics, vol. 29, 2022, De Gruyter), 137-166, Chapter 7 · Zbl 1491.49002
[44] Kaltenbach, A., Error analysis for a Crouzeix-Raviart approximation of the p-Dirichlet problem, 2022, arXiv preprint
[45] Kergrene, K.; Prudhomme, S.; Chamoin, L.; Laforest, M., A new goal-oriented formulation of the finite element method, Comput. Methods Appl. Mech. Eng., 327, 256-276, 2017 · Zbl 1439.65181
[46] Köcher, U.; Bruchhäuser, M. P.; Bause, M., Efficient and scalable data structures and algorithms for goal-oriented adaptivity of space-time FEM codes, SoftwareX, 10, Article 100239 pp., 2019
[47] Langer, U.; Neumüller, M.; Schafelner, A., Space-time finite element methods for parabolic evolution problems with variable coefficients, (Apel, T.; Langer, U.; Meyer, A.; Steinbach, O., Advanced Finite Element Methods with Applications - Selected Papers from the 30th Chemnitz Finite Element Symposium 2017. Advanced Finite Element Methods with Applications - Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, Lecture Notes in Computational Science and Engineering (LNCSE), vol. 128, 2019, Springer: Springer Berlin, Heidelberg, New York), 229-256, Chapter 13
[48] Langer, U.; Schafelner, A., Adaptive space-time finite element methods for non-autonomous parabolic problems with distributional sources, Comput. Methods Appl. Math., 20, 4, 677-693, 2020 · Zbl 1508.65130
[49] Langer, U.; Schafelner, A., Simultaneous space-time finite element methods for parabolic optimal control problems, (Lirkov, I.; Margenov, S., Large-Scale Scientific Computing, 13th International Conference. Large-Scale Scientific Computing, 13th International Conference, LSSC 2021, Sozopol, Bulgaria, June 7-11, 2021 Revised Selected Papers. Large-Scale Scientific Computing, 13th International Conference. Large-Scale Scientific Computing, 13th International Conference, LSSC 2021, Sozopol, Bulgaria, June 7-11, 2021 Revised Selected Papers, Lecture Notes in Computer Science, vol. 13127, 2022, Springer), 314-321 · Zbl 1487.49003
[50] Langer, U.; Schafelner, A., Adaptive space-time finite element methods for parabolic optimal control problems, J. Numer. Math., 30, 4, 247-266, 2022 · Zbl 1527.65099
[51] Langer, U.; Steinbach, O.; Tröltzsch, F.; Yang, H., Unstructured space-time finite element methods for optimal control of parabolic equation, SIAM J. Sci. Comput., 43, 2, A744-A771, 2021 · Zbl 1460.49002
[52] Lee, Y.-J.; Park, J., On the linear convergence of additive Schwarz methods for the p-Laplacian, 2022, arXiv preprint
[53] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, 1969, Dunod Gauthier-Villars: Dunod Gauthier-Villars Paris · Zbl 0189.40603
[54] Mallik, G.; Vohralik, M.; Yousef, S., Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers, J. Comput. Appl. Math., 366, Article 07 pp., 2019
[55] Mfem, Modular finite element methods, [Software]
[56] Rannacher, R.; Vihharev, J., Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors, J. Numer. Math., 21, 1, 23-61, 2013 · Zbl 1267.65184
[57] Richter, T.; Wick, T., Variational localizations of the dual weighted residual estimator, J. Comput. Appl. Math., 279, 192-208, 2015 · Zbl 1306.65283
[58] Roth, J.; Thiele, J. P.; Köcher, U.; Wick, T., Tensor-product space-time goal-oriented error control and adaptivity with partition-of-unity dual-weighted residuals for nonstationary flow problems, 2022, arXiv preprint
[59] Roubíček, T., Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics, vol. 153, 2013, Springer: Springer Basel · Zbl 1270.35005
[60] Saad, Y., Iterative Methods for Sparse Linear Systems, 2003, SIAM: SIAM Philadelphia · Zbl 1031.65046
[61] Schafelner, A., Space-time finite element methods, 2022, Johannes Kelper University Linz, Available at
[62] Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, 2008, Springer
[63] Steinbach, O., Space-time finite element methods for parabolic problems, Comput. Methods Appl. Math., 15, 4, 551-566, 2015 · Zbl 1329.65229
[64] Steinbach, O.; Yang, H., Space-time finite element methods for parabolic evolution equations: discretization, a posteriori error estimation, adaptivity and solution, (Space-Time Methods: Application to Partial Differential Equations. Space-Time Methods: Application to Partial Differential Equations, Radon Series on Computational and Applied Mathematics, vol. 25, 2019, de Gruyter: de Gruyter Berlin), 207-248, Chapter 7 · Zbl 1453.65344
[65] Stevenson, R., The completion of locally refined simplicial partitions created by bisection, Math. Comput., 77, 261, 227-241, 2008 · Zbl 1131.65095
[66] Toulopoulos, I., Numerical solutions of quasilinear parabolic problems by a continuous space-time finite element scheme, SIAM J. Sci. Comput., 44, 5, A2944-A2973, 2022 · Zbl 1501.65128
[67] Toulopoulos, I., A unified time discontinuous Galerkin space-time finite element scheme for non-Newtonian power law models, Int. J. Numer. Methods Fluids, 95, 5, 851-868, 2023 · Zbl 07847160
[68] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid, 2001, Academic Press: Academic Press London · Zbl 0976.65106
[69] Zeidler, E., Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators, 1990, Springer: Springer New York · Zbl 0684.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.