×

NekMesh: an open-source high-order mesh generation framework. (English) Zbl 07833754

Summary: High-order spectral element simulations are now becoming increasingly popular within the computational modelling community, as they offer the potential to deliver increased accuracy at reduced cost compared to traditional low-order codes. However, to support accurate, high-fidelity simulations in complex industrial applications, there is a need to generate curvilinear meshes which robustly and accurately conform to geometrical features. This is, at present, a key challenge within the mesh generation community, with only a few open-source tools able to generate curvilinear meshes for complex geometries. We present NekMesh: an open-source mesh generation package which is designed to enable the generation of valid, high-quality curvilinear meshes of complex, three-dimensional geometries for performing high-order simulations. We outline the software architecture adopted in NekMesh, which uses a pipeline of processing modules to provide a flexible, CAD-independent high-order mesh processing tool, capable of both generating meshes for a wide range of use cases, as well as post-processing linear meshes from a range of input formats for use with high-order simulations. A number of examples in various application areas are presented, with a particular emphasis on challenging aeronautical and fluid dynamics test cases.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65-04 Software, source code, etc. for problems pertaining to numerical analysis
Full Text: DOI

References:

[1] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics, 2013, Oxford University Press · Zbl 1256.76003
[2] Lombard, J.-E. W.; Moxey, D.; Sherwin, S. J.; Hoessler, J. F.A.; Dhandapani, S.; Taylor, M. J., Implicit large-eddy simulation of a wingtip vortex, AIAA J., 54, 2, 506-518, 2016
[3] Moxey, D.; Cantwell, C. D.; Kirby, R. M.; Sherwin, S. J., Optimizing the performance of the spectral/hp element method with collective linear algebra operations, Comput. Methods Appl. Mech. Eng., 310, 628-645, 2016 · Zbl 1439.65206
[4] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II finite element library: design, features, and insights, Comput. Math. Appl., 81, 407-422, 2021 · Zbl 1524.65002
[5] Witherden, F. D.; Farrington, A. M.; Vincent, P. E., PyFR: an open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach, Comput. Phys. Commun., 185, 11, 3028-3040, 2014 · Zbl 1348.65005
[6] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, T.; Pazner, W.; Stowell, M.; Tomov, V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: a modular finite element methods library, Comput. Math. Appl., 81, 42-74, 2021 · Zbl 1524.65001
[7] Dedner, A.; Klöfkorn, R.; Nolte, M.; Ohlberger, M., A generic interface for parallel and adaptive discretization schemes: abstraction principles and the DUNE-FEM module, Computing, 90, 3-4, 165-196, 2010 · Zbl 1201.65178
[8] Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; de Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J., Nektar++: an open-source spectral/hp element framework, Comput. Phys. Commun., 192, 205-219, 2015 · Zbl 1380.65465
[9] Moxey, D.; Cantwell, C. D.; Bao, Y.; Cassinelli, A.; Castiglioni, G.; Chun, S.; Juda, E.; Kazemi, E.; Lackhove, K.; Marcon, J.; Mengaldo, G.; Serson, D.; Turner, M.; Xu, H.; Peiró, J.; Kirby, R. M.; Sherwin, S. J., Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods, Comput. Phys. Commun., Article 107110 pp., 2019
[10] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis, CFD vision 2030 study: A path to revolutionary computational aerosciences, 2014.
[11] Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach: Results of a Collaborative Research Project Funded by the European Union, 2010-2014, vol. 128, 2015, Springer · Zbl 1330.76006
[12] Geuzaine, C.; Remacle, J.-F., Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331, 2009 · Zbl 1176.74181
[13] George, P. L.; Borouchaki, H., Construction of tetrahedral meshes of degree two, Int. J. Numer. Methods Eng., 90, 9, 1156-1182, 2012 · Zbl 1242.74117
[14] George, P. L.; Borouchaki, H.; Barral, N., Geometric validity (positive Jacobian) of high-order Lagrange finite elements, theory and practical guidance, Eng. Comput., 32, 3, 405-424, 2016
[15] George, P. L.; Borouchaki, H.; Alauzet, F.; Laug, P.; Loseille, A.; Marechal, L., Meshing, geometric modeling and numerical simulation, (Metrics, Meshes and Mesh Adaptation, vol. 2, 2019, Wiley-ISTE) · Zbl 1425.65003
[16] Fast high-order mesh correction for metric-based cavity remeshing and a posteriori curving of P^2 tetrahedral meshes, Comput. Aided Des., 163, Article 103575 pp., 2023
[17] INRIA Saclay AMG, Adaptive mesh generation suite, 2023
[18] Lawrence Livermore National Laboratory, MFEM: modular finite element methods, 2023
[19] Dobrev, V.; Knupp, P.; Kolev, T.; Mittal, K.; Tomov, V., The target-matrix optimization paradigm for high-order meshes, SIAM J. Sci. Comput., 41, 1, B50-B68, 2019 · Zbl 1450.65109
[20] Gargallo-Peiró, A.; Roca, X.; Peraire, J.; Sarrate, J., Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes, Int. J. Numer. Methods Eng., 103, 342-363, 2015 · Zbl 1352.65609
[21] Gargallo-Peiró, A.; Roca, X.; Peraire, J.; Sarrate, J., A distortion measure to validate and generate curved high-order meshes on CAD surfaces with independence of parameterization, Int. J. Numer. Methods Eng., 106, 13, 1100-1130, 2016 · Zbl 1352.65053
[22] Ruiz-Gironés, E.; Roca, X.; Sarrate, J., High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation, Comput. Aided Des., 72, 52-64, 2016
[23] Ruiz-Gironés, E.; Roca, X., Generation of curved meshes for the high-lift common research model, CoRR
[24] Simmetrix, SimModeler pre-processing tool, 2023
[25] Cadence, Fidelity pointwise, 2023
[26] BETA CAE Systems International AG, ANSA preprocessor for computational fluid dynamics v23.1 brochure, 2023
[27] Xie, Z. Q.; Sevilla, R.; Hassan, O.; Morgan, K., The generation of arbitrary order curved meshes for 3D finite element analysis, Comput. Mech., 51, 3, 361-374, 2013
[28] Hartmann, R.; Leicht, T., Generation of unstructured curvilinear grids and high-orderdiscontinuous Galerkin discretization applied to a 3D high-lift configuration, Int. J. Numer. Methods Fluids, 82, 601-629, 2016
[29] Moxey, D.; Ekelschot, D.; Keskin, Ü.; Sherwin, S. J.; Peiró, J., A thermo-elastic analogy for high-order curvilinear meshing with control of mesh validity and quality, Comput. Aided Des., 72, 130-139, 2016
[30] Persson, P.-O.; Peraire, J., Curved mesh generation and mesh refinement using Lagrangian solid mechanics, (47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando (FL), USA, 2009), AIAA paper 2009-949
[31] Poya, R.; Sevilla, R.; Gil, A. J., A unified approach for a posteriori high-order curved mesh generation using solid mechanics, Comput. Mech., 58, 3, 457-490, 2016 · Zbl 1398.74472
[32] Fortunato, M.; Persson, P.-O., High-order unstructured curved mesh generation using the Winslow equations, J. Comput. Phys., 307, 1-14, 2016 · Zbl 1352.65607
[33] Gargallo-Peiró, A.; Roca, X.; Sarrate, J., A surface mesh smoothing and untangling method independent of the CAD parameterization, Comput. Mech., 53, 4, 587-609, 2014 · Zbl 1398.65329
[34] Gargallo-Peiró, A.; Roca, X.; Peraire, J.; Sarrate, J., Defining quality measures for validation and generation of high-order tetrahedral meshes, (22nd International Meshing Roundtable, 2014, Springer International Publishing), 109-126
[35] Roca, X.; Gargallo-Peiró, A.; Sarrate, J., Defining quality measures for high-order planar triangles and curved mesh generation, (20th International Meshing Roundtable, 2011)
[36] Dey, S.; O’Bara, R. M.; Shephard, M. S., Curvilinear mesh generation in 3D, (Proceedings of the 8th International Meshing Roundtable. Proceedings of the 8th International Meshing Roundtable, South Lake Tahoe, California, 1999)
[37] Toulorge, T.; Geuzaine, C.; Remacle, J.-F.; Lambrechts, J., Robust untangling of curvilinear meshes, J. Comput. Phys., 254, 8-26, 2013 · Zbl 1349.65670
[38] Sherwin, S. J.; Peiró, J., Mesh generation in curvilinear domains using high-order elements, Int. J. Numer. Methods Eng., 53, 1, 207-223, 2002 · Zbl 1082.74553
[39] Garanzha, V. A., Variational principles in grid generation and geometric modelling: theoretical justifications and open problems, Numer. Linear Algebra Appl., 11, 5-6, 535-563, 2004 · Zbl 1164.65467
[40] Huang, W.; Russell, R. D., Adaptive Moving Mesh Methods, 2011, Springer · Zbl 1227.65090
[41] Sastry, S. P.; Zala, V.; Kirby, R. M., Thin-plate-spline curvilinear meshing on a calculus-of-variations framework, Proc. Eng., 124, 135-147, 2015
[42] Turner, M.; Peiró, J.; Moxey, D., Curvilinear mesh generation using a variational framework, Comput. Aided Des., 103, 73-91, 2018
[43] ITI-Global, CADfix: CAD translation, healing, repair, and transformation, 2017
[44] Siemens Digital Industries Software, Simcenter STAR-CCM+, 2023
[45] Moxey, D.; Green, M. D.; Sherwin, S. J.; Peiró, J., An isoparametric approach to high-order curvilinear boundary-layer meshing, Comput. Methods Appl. Mech. Eng., 283, 636-650, 2015 · Zbl 1423.74908
[46] Volino, P.; Thalmann, N. M., The SPHERIGON: a simple polygon patch for smoothing quickly your polygonal meshes, (Proceedings Computer Animation’98 (Cat. No. 98EX169), 1998), 72-78
[47] Turner, M.; Peiró, J.; Moxey, D., A variational framework for high-order mesh generation, Proc. Eng., 82, 127-135, 2016
[48] Shewchuk, J., Triangle: engineering a 2D quality mesh generator and Delaunay triangulator, (Applied Computational Geometry: Towards Geometric Engineering, vol. 1148, 1996), 203-222
[49] Si, H., TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., 41, 2, 11:1-11:36, 2015 · Zbl 1369.65157
[50] ISO, ISO 10303-21:2016 Industrial automation systems and integration - Product data representation and exchange - Part 21: Implementation methods: Clear text encoding of the exchange structure, International Organization for Standardization, the STEP standard, 2016.
[51] Bentley, J. L., Multidimensional binary search trees used for associative searching, Commun. ACM, 18, 9, 509-517, 1975 · Zbl 0306.68061
[52] Xiao, Z.; Chen, J.; Zheng, Y.; Zeng, L.; Zheng, J., Automatic unstructured element-sizing specification algorithm for surface mesh generation, Proc. Eng., 82, 240-252, 2014
[53] Peiró, J., Handbook of Grid Generation, 1999, CRC Press LLC, Surface Grid Generation, chapter 19 · Zbl 0980.65500
[54] Shewchuk, J. R., Robust adaptive floating-point geometric predicates, (Proceedings of the Twelfth Annual Symposium on Computational Geometry, 1996, Association for Computing Machinery), 141-150
[55] Aubry, R.; Löhner, R., On the ‘most normal’ normal, Commun. Numer. Methods Eng., 24, 12, 1641-1652, 2008 · Zbl 1157.65328
[56] Moxey, D.; Green, M.; Sherwin, S. J.; Peiró, J., An isoparametric approach to high-order curvilinear boundary-layer meshing, Comput. Methods Appl. Mech. Eng., 283, 636-650, 2015 · Zbl 1423.74908
[57] Turner, M.; Moxey, D.; Sherwin, S. J.; Peiró, J., Automatic generation of 3D unstructured high-order curvilinear meshes, (VII European Congress on Computational Methods in Applied Sciences and Engineering, 2016)
[58] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C., A limited memory algorithm for bound constrained optimisation, SIAM J. Sci. Comput., 16, 5, 1190-1208, 1995 · Zbl 0836.65080
[59] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis, 2008, Cambridge University Press · Zbl 1142.74002
[60] Escobar, J. M.; Rodríguez, E.; Montenegro, R.; Montero, G.; González-Yuste, J. M., Simultaneous untangling and smoothing of tetrahedral meshes, Comput. Methods Appl. Mech. Eng., 192, 25, 2775-2787, 2003 · Zbl 1037.65126
[61] Garanzha, V. A.; Kaporin, I. E., Regularization of the variational method of grid generation, Comput. Math. Math. Phys., 39, 1426-1440, 1999 · Zbl 0977.65111
[62] Eichstädt, J. R.; Green, M.; Turner, M.; Peiró, J.; Moxey, D., Accelerating high-order mesh generation with an architecture-independent programming model, Comput. Phys. Commun., 229, 36-53, 2018
[63] Eichstädt, J. R.; Moxey, D.; Peiró, J., Towards a performance-portable high-order implicit flow solver, (American Institute of Aeronautics and Astronautics Inc., 2019), AIAA paper 2019-1404
[64] Moxey, D.; Green, M. D.; Sherwin, S. J.; Peiró, J., On the generation of curvilinear meshes through subdivision of isoparametric elements, (New Challenges in Grid Generation and Adaptivity for Scientific Computing, 2015, Springer), 203-215 · Zbl 1327.65257
[65] Marcon, J.; Turner, M.; Peiró, J.; Moxey, D.; Pollard, C. R.; Bucklow, H.; Gammon, M., High-order curvilinear hybrid mesh generation for CFD simulations, (2018 AIAA Aerospace Sciences Meeting, 2018)
[66] Turner, M., High-order mesh generation for CFD solvers, 2018, Imperial College London, Ph.D. thesis
[67] Capgemini Engineering, Open Cascade, 2023
[68] Nektar++, 2023
[69] Argonne National Laboratory, Illinois, NEK5000, 2023
[70] Blackburn, H.; Lee, D.; Albrecht, T.; Singh, J., Semtex: a spectral element-Fourier solver for the incompressible Navier-Stokes equations in cylindrical or Cartesian coordinates, Comput. Phys. Commun., 245, Article 106804 pp., 2019 · Zbl 1515.65256
[71] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, 4th ed., Kitware, 2006.
[72] Mengaldo, G.; Moxey, D.; Turner, M.; Moura, R. C.; Jassim, A.; Taylor, M.; Peiró, J.; Sherwin, S., Industry-relevant implicit large-eddy simulation of a high-performance road car via spectral/hp element methods, SIAM Rev., 63, 4, 723-755, 2021
[73] Pegrum, J., Experimental study of the vortex system generated by a Formula 1 front wing, 2007, Imperial College London, Ph.D. thesis
[74] Buscariolo, F. F.; Hoessler, J.; Moxey, D.; Jassim, A.; Gouder, K.; Basley, J.; Murai, Y.; Assi, G. R.; Sherwin, S. J., Spectral/hp element simulation of flow past a formula one front wing: validation against experiments, J. Wind Eng. Ind. Aerodyn., 221, Article 104832 pp., 2022
[75] Camier, J.-S.; Dobrev, V.; Knupp, P.; Kolev, T.; Mittal, K.; Rieben, R.; Tomov, V., Accelerating high-order mesh optimization using finite element partial assembly on GPUs, J. Comput. Phys., 474, Article 111808 pp., 2023 · Zbl 07640565
[76] Lock, C.; Hassan, O.; Sevilla, R.; Jones, J., Meshing using neural networks for improving the efficiency of computer modelling, Eng. Comput., 1-30, 2023
[77] Cohen, J.; Moxey, D.; Cantwell, C. D.; Burovskiy, P.; Darlington, J.; Sherwin, S. J., Nekkloud: a software environment for high-order finite element analysis on clusters and clouds, (2013 IEEE International Conference on Cluster Computing, 2013), 1-5
[78] Cohen, J.; Marcon, J.; Turner, M.; Cantwell, C.; Sherwin, S.; Peiró, J.; Moxey, D., Simplifying high-order mesh generation for computational scientists, (10th International Workshop on Science Gateways, IWSG 2018, CEUR Workshop Proceedings, 2018)
[79] J. Marcon, M. Turner, D. Moxey, S. Sherwin, J. Peiró, A variational approach to high-order r-adaptation, research note in the 26th International Meshing Roundtable, 2017.
[80] Marcon, J.; Kopriva, D.; Sherwin, S.; Peiró, J., A high resolution PDE approach to quadrilateral mesh generation, J. Comput. Phys., 399, 108918, 1-17, 2019 · Zbl 1453.65045
[81] Volino, P.; Thalmann, N. M., The SPHERIGON: a simple polygon patch for smoothing quickly your polygonal meshes, (Proceedings Computer Animation’98, 1998, IEEE: IEEE Philadelphia, PA, USA), 72-78
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.