×

hPIC2: a hardware-accelerated, hybrid particle-in-cell code for dynamic plasma-material interactions. (English) Zbl 07693419

Summary: The exascale era of high performance computing promises to bring the field of computational plasma physics ever closer to the goal of accurate multiscale modeling. Such computers will rely on hardware acceleration to offload work to dedicated components, notably general-purpose graphics processing units (GPUs). However, devices from different manufacturers require software to be written with different parallel programming models, greatly increasing the code maintenance burden of applications designed to perform on more than one such device. hPIC2 is a hybrid plasma simulation code developed with the Kokkos performance portability framework to target the architectures that will drive exascale computing for the foreseeable future. As a hybrid simulation code, hPIC2 investigates the simultaneous use of various plasma models on the same domain, at the same time. hPIC2 also optionally couples to RustBCA, which accurately models ion-material interactions using the binary collision approximation (BCA) method [1]. hPIC2 therefore achieves scalable performance on a variety of computing architectures when simulating complex and diverse plasmas, particularly near plasma-material interfaces.

MSC:

65-XX Numerical analysis
82-XX Statistical mechanics, structure of matter

Software:

VTK; SDTrimSP; hPIC2; TOML
Full Text: DOI

References:

[1] Robinson, M. T., Radiat. Eff. Defects Solids, 130, 1, 3-20 (1994)
[2] Reyes, R.; Lomüller, V., (Parallel Computing: On the Road to Exascale (2016), IOS Press), 673-682
[3] Sommer, L.; Korinth, J.; Koch, A., (2017 IEEE 28th International Conference on Application-Specific Systems, Architectures and Processors (ASAP) (2017), IEEE), 201-205
[4] Beckingsale, D. A.; Burmark, J.; Hornung, R.; Jones, H.; Killian, W.; Kunen, A. J.; Pearce, O.; Robinson, P.; Ryujin, B. S.; Scogland, T. R., (2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC) (2019), IEEE), 71-81
[5] Trott, C. R.; Lebrun-Grandié, D.; Arndt, D.; Ciesko, J.; Dang, V.; Ellingwood, N.; Gayatri, R.; Harvey, E.; Hollman, D. S.; Ibanez, D.; Liber, N.; Madsen, J.; Miles, J.; Poliakoff, D.; Powell, A.; Rajamanickam, S.; Simberg, M.; Sunderland, D.; Turcksin, B.; Wilke, J., IEEE Trans. Parallel Distrib. Syst., 33, 4, 805-817 (2022)
[6] Wang, B.; Ethier, S.; Tang, W.; Williams, T.; Ibrahim, K. Z.; Madduri, K.; Williams, S.; Oliker, L., (Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13 (2013), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 1-12
[7] Bird, R.; Gillies, P.; Bareford, M.; Herdman, J.; Jarvis, S., (2015 IEEE International Conference on Cluster Computing (2015)), 768-776
[8] Younkin, T. R.; Green, D. L.; Simpson, A. B.; Wirth, B., Comput. Phys. Commun., 264, Article 107885 pp. (2021)
[9] Smith, C. W.; Diamond, G.; Perumpilly, G.; Zhang, C.; Truszkowska, A.; Hakimi, M.; Sahni, O.; Shephard, M. S.; Yoon, E.; Ibanez, D. A., (Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’19 (2019), Association for Computing Machinery: Association for Computing Machinery Denver, Colorado), 1-3
[10] Bussmann, M.; Burau, H.; Cowan, T. E.; Debus, A.; Huebl, A.; Juckeland, G.; Kluge, T.; Nagel, W. E.; Pausch, R.; Schmitt, F.; Schramm, U.; Schuchart, J.; Widera, R., (Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13 (2013), ACM: ACM New York, NY, USA), 5:1-5:12
[11] Bettencourt, M. T.; Brown, D. A.; Cartwright, K. L.; Cyr, E. C.; Glusa, C. A.; Lin, P. T.; Moore, S. G.; McGregor, D. A.; Pawlowski, R. P.; Phillips, E. G., Commun. Comput. Phys., 30, SAND-2021-2806J (2021)
[12] V.V. Srinivasaragavan, M.F. Huq, O. Sahni, D. Curreli, Incorporation of multi-block implicit non-uniform mesh into particle-in-cell scheme for resolving high-gradient plasma sheath, 2022, in preparation.
[13] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, T., Comput. Math. Appl., 81, 42-74 (2021) · Zbl 1524.65001
[14] Drobny, J. T.; Curreli, D., J. Open Sour. Softw., 6, 64, 3298 (2021)
[15] Yamamura, Y.; Matsunami, N.; Itoh, N., Radiat. Eff., 68, 3, 83-87 (1982)
[16] Yamamura, Y., Nucl. Instrum. Methods Phys. Res., 194, 1-3, 515-522 (1982)
[17] Eckstein, W.; Garcia-Rosales, C.; Roth, J.; Ottenberger, W., Sputtering Data (1993)
[18] Ziegler, J. F.; Ziegler, M. D.; Biersack, J. P., Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 268, 11-12, 1818-1823 (2010)
[19] Mutzke, A.; Schneider, R.; Eckstein, W.; Dohmen, R.; Schmid, K.; Toussaint, U.v.; Badelow, G., SDTrimSP version 6.00 (2019)
[20] Möller, W.; Eckstein, W., Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 2, 1-3, 814-818 (1984)
[21] Drobny, J.; Hayes, A.; Curreli, D.; Ruzic, D. N., J. Nucl. Mater., 494, 278-283 (2017)
[22] Reiter, D.; Baelmans, M.; Boerner, P., Fusion Sci. Technol., 47, 2, 172-186 (2005)
[23] Kirschner, A.; Philipps, V.; Winter, J.; Kögler, U., Nucl. Fusion, 40, 5, 989 (2000)
[24] Kirschner, A.; Tskhakaya, D.; Kawamura, G.; Borodin, D.; Brezinsek, S.; Ding, R.; Linsmeier, C.; Romazanov, J., Contrib. Plasma Phys., 56, 6-8, 622-627 (2016)
[25] Dawson, J. M., Rev. Mod. Phys., 55, 2, 403 (1983)
[26] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation (2018), CRC Press
[27] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (2021), CRC Press · Zbl 0662.76002
[28] Tskhakaya, D.; Matyash, K.; Schneider, R.; Taccogna, F., Contrib. Plasma Phys., 47, 8-9, 563-594 (2007)
[29] Hagelaar, G. J., J. Comput. Phys., 227, 2, 871-876 (2007) · Zbl 1133.82011
[30] Elias, M.; Curreli, D., J. Comput. Phys., 409, Article 109320 pp. (2020) · Zbl 1435.76099
[31] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (2007), Cambridge University Press · Zbl 1118.65117
[32] Céa, J., Ann. Inst. Fourier, 14, 2, 345-444 (1964) · Zbl 0127.08003
[33] Bramble, J. H.; Hilbert, S., SIAM J. Numer. Anal., 7, 1, 112-124 (1970) · Zbl 0201.07803
[34] Aubin, J. P., Ann. Sc. Norm. Super. Pisa, Cl. Sci., 21, 4, 599-637 (1967) · Zbl 0276.65052
[35] Nitsche, J., Numer. Math., 11, 4, 346-348 (1968) · Zbl 0175.45801
[36] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (2002), SIAM · Zbl 0999.65129
[37] Boris, J. P., (Proc. Fourth Conf. Num. Sim. Plasmas (1970)), 3-67
[38] Qin, H.; Zhang, S.; Xiao, J.; Liu, J.; Sun, Y.; Tang, W. M., Phys. Plasmas, 20, 8, Article 084503 pp. (2013)
[39] Eckstein, W., Computer Simulation of Ion-Solid Interactions (1991), Springer-Verlag
[40] Falgout, R. D.; Yang, U. M., (International Conference on Computational Science (2002), Springer), 632-641 · Zbl 1056.65046
[41] Van der Vorst, H. A., SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[42] Yang, U. M., Appl. Numer. Math., 41, 1, 155-177 (2002) · Zbl 0995.65128
[43] Preston-Werner, T.; Gedam, P., TOML specification 1.0.0 (Jan. 2021)
[44] Niina, T.; Williams, J.; Fraux, G.; Top, P.; Shynkarenka, I.; Alyousef, M.; Merry, A.; KerstinKeller; KenIchi, O.; Khan, Q.; Freeman, J.; estshorter; Huebl, A.; Moyer, J.; Nilsson, K.; Marascio, L.; maass-tv; Kahrmann, O.; Beneš, P.; Wang, S.; Trinh, K. D.; sneakypete81, ToruNiina/toml11: version 3.7.1 (Mar. 2022)
[45] Eckstein, W., (Taglauer, E.; Heiland, W., Inelastic Particle-Surface Collisions (1981), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 157-183
[46] Vahedi, V.; Surendra, M., Comput. Phys. Commun., 87, 1-2, 179-198 (1995)
[47] Birdsall, C. K., IEEE Trans. Plasma Sci., 19, 2, 65-85 (1991)
[48] Bronold, F.; Matyash, K.; Tskhakaya, D.; Schneider, R.; Fehske, H., J. Phys. D, Appl. Phys., 40, 21, 6583 (2007)
[49] Tskhakaya, D., Plasma Phys. Control. Fusion, 59, 11, Article 114001 pp. (2017)
[50] Tskhakaya, D., Contrib. Plasma Phys., 52, 5-6, 490-499 (2012)
[51] Takizuka, T., Plasma Phys. Control. Fusion, 59, 3, Article 034008 pp. (2017)
[52] Takizuka, T.; Abe, H., J. Comput. Phys., 25, 3, 205-219 (1977) · Zbl 0403.76091
[53] Bland, W.; Bouteiller, A.; Herault, T.; Bosilca, G.; Dongarra, J., Int. J. High Perform. Comput. Appl., 27, 3, 244-254 (2013)
[54] Schroeder, W.; Martin, K.; Lorensen, B., The Visualization Toolkit (2006), Kitware
[55] Lieberman, M. A.; Lichtenberg, A. J., Mater. Res. Soc. Bull., 30, 12, 899-901 (1994)
[56] Chen, F. F., Introduction to Plasma Physics (2012), Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.