×

Geometric decomposition and efficient implementation of high order face and edge elements. (English) Zbl 1542.65155

Summary: This study investigates high-order face and edge elements in finite element methods, with a focus on their geometric attributes, indexing management, and practical application. The exposition begins by a geometric decomposition of Lagrange finite elements, setting the foundation for further analysis. The discussion then extends to \(H(\mathrm{div})\)-conforming and \(H(\mathrm{curl})\)-conforming finite element spaces, adopting variable frames across differing sub-simplices. The imposition of tangential or normal continuity is achieved through the strategic selection of corresponding bases. The paper concludes with a focus on efficient indexing management strategies for degrees of freedom, offering practical guidance to researchers and engineers. It serves as a comprehensive resource that bridges the gap between theory and practice.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory

Software:

FEALPy; iFEM; MFEM; FEniCS

References:

[1] = argsort ( LFace );
[2] 3 i2 = i1 [ i0 ];
[3] References
[4] M. Ainsworth, G. Andriamaro, and O. Davydov, A Bernstein-Bézier basis for arbitrary order Raviart-Thomas finite elements, Constr. Approx., 41 (2015), 1-22. · Zbl 1315.65096
[5] M. Ainsworth and J. Coyle, Hierarchic finite element bases on unstructured tetrahedral meshes, Internat. J. Numer. Methods Engrg., 58 (2003), 2103-2130. · Zbl 1042.65088
[6] M. Ainsworth and G. Fu, Bernstein-Bézier bases for tetrahedral finite elements, Comput. Methods Appl. Mech. Engrg., 340 (2018), 178-201. · Zbl 1440.65168
[7] M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells., The FEniCS project version 1.5, Archive of Numerical Software, 3 (2015), 9-23.
[8] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Du-douit, A. Fisher, T. Kolev, et al, MFEM: A modular finite element methods library, Comput. Math. Appl., 81 (2021), 42-74. · Zbl 1524.65001
[9] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological tech-niques, and applications, Acta Numer., 15 (2006), 1-155. · Zbl 1185.65204
[10] D. N. Arnold, R. S. Falk, and R. Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1660-1672. · Zbl 1227.65091
[11] F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987), 237-250. · Zbl 0631.65107
[12] F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235. · Zbl 0599.65072
[13] D. A. Castro, P. R. B. Devloo, A. M. Farias, S. M. Gomes, D. de Siqueira, and O. Durán, Three dimensional hierarchical mixed finite element approximations with enhanced primal variable accuracy, Comput. Methods Appl. Mech. Engrg., 306 (2016), 479-502. · Zbl 1436.65174
[14] L. Chen, iFEM: An integrated finite element methods package in MATLAB, Technical report, University of California at Irvine, https://github.com/lyc102/ifem, 2009.
[15] L. Chen and X. Huang, H(div)-conforming finite element tensors, arXiv preprint arXiv:2112.14351v1, 2021.
[16] L. Chen and X. Huang, Finite element de Rham and Stokes complexes in three dimensions, Math. Comp., 93 (2024), 55-110. · Zbl 1530.65159
[17] S. H. Christiansen, J. Hu, and K. Hu, Nodal finite element de Rham complexes, Numer. Math., 139 (2018), 411-446. · Zbl 1397.65256
[18] D. De Siqueira, P. R. B. Devloo, and S. M. Gomes, Hierarchical high order finite element approximation spaces for H(div) and H(curl), in G. Kreiss, P. L ötstedt, A. Målqvist, and M. Neytcheva, editors, Numerical Mathematics and Advanced Applications 2009, pages 269-276, Springer Berlin, Heidelberg, 2010. · Zbl 1216.65154
[19] D. De Siqueira, P. R. B. Devloo, and S. M. Gomes, A new procedure for the construction of hierarchical high order Hdiv and Hcurl finite element spaces, J. Comput. Appl. Math., 240 (2013), 204-214. · Zbl 1255.65209
[20] V. Ervin, Computational bases for RT k and BDM k on triangles, Comput. Math. Appl., 64 (2012), 2765-2774. · Zbl 1268.65152
[21] J.-C. Nédélec, A new family of mixed finite elements in R 3 , Numer. Math., 50 (1986), 57-81. · Zbl 0625.65107
[22] R. Nicolaides, On a class of finite elements generated by Lagrange interpolation, SIAM J. Numer. Anal., 9 (1972), 435-445. · Zbl 0282.65009
[23] M. E. Rognes, R. C. Kirby, and A. Logg, Efficient assembly of H(div) and H(curl) conforming finite elements, SIAM J. Sci. Comput., 31 (2010), 4130-4151. · Zbl 1206.65248
[24] H. Wei, C. Chen, and Y. Huang, FEALPy: Finite Element Analysis Library in Python, https://github.com/weihuayi/fealpy, Xiangtan University, 2017-2024.
[25] J. Xin and W. Cai, A well-conditioned hierarchical basis for triangular H(curl)-conforming elements, Commun. Comput. Phys., 9 (2011), 780-806. · Zbl 1364.65257
[26] J. Xin, W. Cai, and N. Guo, On the construction of well-conditioned hierarchical bases for (div)-conforming R n simplicial elements, Commun. Comput. Phys., 14 (2013), 621-638. · Zbl 1388.65161
[27] J. Xin, N. Guo, and W. Cai, On the construction of well-conditioned hierarchical bases for tetrahedral H(curl)-conforming Nédélec element, J. Comput. Math., 29 (2011), 526-542. · Zbl 1249.65255
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.