×

Multilevel well modeling in aggregation-based nonlinear multigrid for multiphase flow in porous media. (English) Zbl 07880850

Summary: A full approximation scheme (FAS) nonlinear multigrid solver for two-phase flow and transport problems driven by wells with multiple perforations is developed. It is an extension to our previous work on FAS solvers for diffusion and transport problems. The solver is applicable to discrete problems defined on unstructured grids as the coarsening algorithm is aggregation-based and algebraic. To construct coarse basis that can better capture the radial flow near wells, coarse grids in which perforated well cells are not near the coarse-element interface are desired. This is achieved by an aggregation algorithm proposed in this paper that makes use of the location of well cells in the cell-connectivity graph. Numerical examples in which the FAS solver is compared against Newton’s method on benchmark problems are given. In particular, for a refined version of the SAIGUP model, the FAS solver is at least 35% faster than Newton’s method for time steps with a CFL number greater than 10.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
76Mxx Basic methods in fluid mechanics
76Sxx Flows in porous media; filtration; seepage

Software:

MRST; Matlab

References:

[1] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 138, 333-390, 1977 · Zbl 0373.65054
[2] Jenny, P.; Tchelepi, H. A.; Lee, S. H., Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions, J. Comput. Phys., 228, 20, 7497-7512, 2009 · Zbl 1391.76553
[3] Wang, X.; Tchelepi, H. A., Trust-region based solver for nonlinear transport in heterogeneous porous media, J. Comput. Phys., 253, 114-137, 2013 · Zbl 1349.76406
[4] Li, B.; Tchelepi, H. A., Nonlinear analysis of multiphase transport in porous media in the presence of viscous, buoyancy, and capillary forces, J. Comput. Phys., 297, 104-131, 2015 · Zbl 1349.76820
[5] Møyner, O., Nonlinear solver for three-phase transport problems based on approximate trust regions, Comput. Geosci., 21, 999-1021, 2017 · Zbl 1396.76061
[6] Lee, S. H.; Efendiev, Y.; Tchelepi, H. A., Hybrid upwind discretization of nonlinear two-phase flow with gravity, Adv. Water Resour., 82, 27-38, 2015
[7] Hamon, F. P.; Mallison, B.; Tchelepi, H. A., Implicit hybrid upwind scheme for coupled multiphase flow and transport with buoyancy, Comput. Methods Appl. Mech. Eng., 311, 599-624, 2016 · Zbl 1439.76109
[8] Moncorgé, A.; Møyner, O.; Tchelepi, H. A.; Jenny, P., Consistent upwinding for sequential fully implicit multiscale compositional simulation, Comput. Geosci., 24, 2, 533-550, 2020 · Zbl 1434.76128
[9] Bosma, S.; Hamon, F. P.; Mallison, B.; Tchelepi, H. A., Smooth implicit hybrid upwinding for compositional multiphase flow in porous media, Comput. Methods Appl. Mech. Eng., 388, Article 114288 pp., 2022 · Zbl 1507.76195
[10] Kwok, F.; Tchelepi, H. A., Potential-based reduced Newton algorithm for nonlinear multiphase flow in porous media, J. Comput. Phys., 227, 1, 706-727, 2007 · Zbl 1388.76258
[11] Natvig, J.; Lie, K.-A., Fast computation of multiphase flow in porous media by implicit discontinuous Galerkin schemes with optimal ordering of elements, J. Comput. Phys., 227, 24, 10108-10124, 2008 · Zbl 1218.76029
[12] Hamon, F. P.; Tchelepi, H. A., Ordering-based nonlinear solver for fully implicit simulation of three-phase flow, Comput. Geosci., 20, 5, 909-927, 2016 · Zbl 1391.76805
[13] Klemetsdal, Ø. S.; Rasmussen, A. F.; Møyner, O.; Lie, K.-A., Efficient reordered nonlinear Gauss-Seidel solvers with higher order for black-oil models, Comput. Geosci., 24, 2, 593-607, 2020 · Zbl 1434.86015
[14] Cai, X.-C.; Keyes, D. E., Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput., 24, 1, 183-200, 2002 · Zbl 1015.65058
[15] Liu, L.; Keyes, D. E., Field-split preconditioned inexact Newton algorithms, SIAM J. Sci. Comput., 37, 3, A1388-A1409, 2015 · Zbl 1328.65122
[16] Dolean, V.; Gander, M. J.; Kheriji, W.; Kwok, F.; Masson, R., Nonlinear preconditioning: how to use a nonlinear Schwarz method to precondition Newton’s method, SIAM J. Sci. Comput., 38, 6, A3357-A3380, 2016 · Zbl 1352.65326
[17] Skogestad, J. O.; Keilegavlen, E.; Nordbotten, J. M., Domain decomposition strategies for nonlinear flow problems in porous media, J. Comput. Phys., 234, 439-451, 2013
[18] Skogestad, J. O.; Keilegavlen, E.; Nordbotten, J. M., Two-scale preconditioning for two-phase nonlinear flows in porous media, Transp. Porous Media, 114, 2, 485-503, 2016
[19] Klemetsdal, Ø. S.; Moncorgé, A.; Møyner, O.; Lie, K.-A., Additive Schwarz preconditioned exact Newton method as a nonlinear preconditioner for multiphase porous media flow, (Proceedings of ECMOR XVII, vol. 2020, European Association of Geoscientists and Engineers, 2020), 1-20
[20] N’diaye, M.; Hamon, F. P.; Tchelepi, H. A., Comparison of nonlinear field-split preconditioners for two-phase flow in heterogeneous porous media, Comput. Geosci., 1-17, 2023 · Zbl 1514.76002
[21] Christensen, M.l. C.; Eskildsen, K. L.; Engsig-Karup, A. P.; Wakefield, M. A., Nonlinear multigrid for reservoir simulation, SPE J., 21, 3, 888-898, 2016
[22] Christensen, M.l. C.; Vassilevski, P. S.; Villa, U., Nonlinear multigrid solvers exploiting AMGe coarse spaces with approximation properties, J. Comput. Appl. Math., 340, 691-708, 2018 · Zbl 1432.76160
[23] Toft, R.; Lie, K.-A.; Møyner, O., Full approximation scheme for reservoir simulation, (Proceedings - Norsk Informatikkonferanse. Proceedings - Norsk Informatikkonferanse, Oslo, Norway, 2018)
[24] Lee, C. S.; Hamon, F. P.; Castelletto, N.; Vassilevski, P. S.; White, J. A., Nonlinear multigrid based on local spectral coarsening for heterogeneous diffusion problems, Comput. Methods Appl. Mech. Eng., 372, Article 113432 pp., 2020 · Zbl 1506.76113
[25] Lee, C. S.; Hamon, F. P.; Castelletto, N.; Vassilevski, P. S.; White, J. A., An aggregation-based nonlinear multigrid solver for two-phase flow and transport in porous media, Comput. Math. Appl., 113, 282-299, 2022 · Zbl 1504.65186
[26] Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation, SPE J., 18, 3, 183-194, 1978
[27] Wolfsteiner, C.; Lee, S. H.; Tchelepi, H. A., Well modeling in the multiscale finite volume method for subsurface flow simulation, Multiscale Model. Simul., 5, 3, 900-917, 2006 · Zbl 1205.76175
[28] Arbogast, T.; Bryant, S. L., A two-scale numerical subgrid technique for waterflood simulations, SPE J., 7, 04, 446-457, 2002
[29] Chen, Z.; Yue, X., Numerical homogenization of well singularities in the flow transport through heterogeneous porous media, Multiscale Model. Simul., 1, 2, 260-303, 2003 · Zbl 1107.76073
[30] Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model. Simul., 2, 3, 421-439, 2004 · Zbl 1181.76125
[31] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids, Multiscale Model. Simul., 5, 2, 337-363, 2006 · Zbl 1124.76022
[32] Ligaarden, S., Well models for mimetic finite difference methods and improved representation of wells in multiscale methods, 2008, University of Oslo, Master’s thesis
[33] Skaflestad, B.; Krogstad, S., Multiscale/mimetic pressure solvers with near-well grid adaptation, (ECMOR XI-11th European Conference on the Mathematics of Oil Recovery, European Association of Geoscientists & Engineers, 2008), Article cp-62
[34] Aziz, K.; Settari, A., Petroleum Reservoir Simulation, 1979, Elsevier Applied Science Publishers: Elsevier Applied Science Publishers London, UK
[35] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, (Ciarlet, P. G.; Lions, J.-L., Solution of Equation in \(R^n\) (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis, vol. 7, 2000, Elsevier), 713-1018 · Zbl 0981.65095
[36] Chen, Z.; Huan, G.; Ma, Y., Computational Methods for Multiphase Flows in Porous Media, 2006, Society for Industrial and Applied Mathematics · Zbl 1092.76001
[37] Henson, V. E., Multigrid methods for nonlinear problems: an overview, (Bouman, C. A.; Stevenson, R. L., Computational Imaging. Computational Imaging, Proceedings of SPIE, vol. 5016, 2003), 36-48
[38] Barker, A. T.; Gelever, S. V.; Lee, C. S.; Osborn, S.; Vassilevski, P. S., Multilevel spectral coarsening for graph Laplacian problems with application to reservoir simulation, SIAM J. Sci. Comput., 43, 4, A2737-A2765, 2021 · Zbl 1482.65222
[39] Lee, C. S.; Vassilevski, P. S., Parallel solver for H(div) problems using hybridization and AMG, (Lee, C.-O.; Cai, X.-C.; Keyes, D. E.; Kim, H. H.; Klawonn, A.; Park, E.-J.; Widlund, O. B., Domain Decomposition Methods in Science and Engineering XXIIII. Domain Decomposition Methods in Science and Engineering XXIIII, Lecture Notes in Computational Science and Engineering, vol. 116, 2017), 69-80 · Zbl 1367.65172
[40] Dobrev, V. A.; Kolev, Tz. V.; Lee, C. S.; Tomov, V. Z.; Vassilevski, P. S., Algebraic hybridization and static condensation with application to scalable H(div) preconditioning, SIAM J. Sci. Comput., 41, 3, B425-B447, 2019 · Zbl 1420.65029
[41] Karypis, G.; Kumar, V., A fast and highly quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392, 1998 · Zbl 0915.68129
[42] Cao, H., Development of Techniques for General Purpose Simulators, 2002, Stanford University
[43] Younis, R., Modern Advances in Software and Solution Algorithms for Reservoir Simulation, 2011, Stanford University
[44] MFEM: modular finite element methods library · Zbl 1524.65001
[45] smoothG: mixed graph Laplacian upscaling and solvers
[46] Lie, K.-A., An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST), 2019, Cambridge University Press · Zbl 1425.76001
[47] Jansen, J. D.; Fonseca, R.-M.; Kahrobaei, S.; Siraj, M. M.; Van Essen, G. M.; Van den Hof, P. M.J., The egg model - a geological ensemble for reservoir simulation, Geosci. Data J., 1, 2, 192-195, 2014
[48] Geos, 2023, Online
[49] Manzocchi, T.; Carter, J. N.; Skorstad, A.; Fjellvoll, B.; Stephen, K. D.; Howell, J. A.; Matthews, J. D.; Walsh, J. J.; Nepveu, M.; Bos, C., Sensitivity of the impact of geological uncertainty on production from faulted and unfaulted shallow-marine oil reservoirs: objectives and methods, Pet. Geosci., 14, 1, 3-15, 2008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.