×

Weak boundary conditions for Lagrangian shock hydrodynamics: a high-order finite element implementation on curved boundaries. (English) Zbl 07863595

Summary: We propose a new Nitsche-type approach for weak enforcement of normal velocity boundary conditions for a Lagrangian discretization of the compressible shock-hydrodynamics equations using high-order finite elements on curved boundaries. Specifically, the variational formulation is appropriately modified to enforce free-slip wall boundary conditions, without perturbing the structure of the function spaces used to represent the solution, with a considerable simplification with respect to traditional approaches. Total energy is conserved and the resulting mass matrices are constant in time. The robustness and accuracy of the proposed method are validated with an extensive set of tests involving nontrivial curved boundaries.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Nxx Compressible fluids and gas dynamics

Software:

MFEM; Laghos

References:

[1] Abgrall, Rémi; Lipnikov, Konstantin; Morgan, Nathaniel; Tokareva, Svetlana, Multidimensional staggered grid residual distribution scheme for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 42, 1, A343-A370, 2020 · Zbl 1434.76062
[2] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, Tz.; Pazner, W.; Stowell, M.; Tomov, V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: a modular finite element methods library, Comput. Math. Appl., 81, 42-74, 2021 · Zbl 1524.65001
[3] Anderson, R.; Black, A.; Busby, L.; Bleile, R.; Blakeley, B.; Camier, J.-S.; Ciurej, J.; Dobrev, V.; Cook, A.; Elliott, N.; Grondalski, J.; Hornung, R.; Harrison, C.; Kolev, Tz.; Legendre, M.; Nissen, W.; Liu, W.; Olson, B.; Osawe, M.; Pearce, O.; Papadimitrou, G.; Pember, R.; Skinner, A.; Stitt, T.; Stevens, D.; Taylor, L.; Tomov, V.; Vargas, A.; Rieben, R.; Weiss, K.; White, D., The Multiphysics on Advanced Platforms Project, 2020
[4] Anderson, Robert W.; Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.; Tomov, Vladimir Z., High-order multi-material ALE hydrodynamics, SIAM J. Sci. Comput., 40, 1, B32-B58, 2018 · Zbl 1480.65246
[5] Barlow, Andrew J., A compatible finite element multi-material ALE hydrodynamics algorithm, Int. J. Numer. Methods Fluids, 56, 8, 953-964, 2008 · Zbl 1169.76030
[6] Behr, Marek, On the application of slip boundary condition on curved boundaries, Int. J. Numer. Methods Fluids, 45, 1, 43-51, 2004 · Zbl 1079.76576
[7] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394, 1992 · Zbl 0763.73052
[8] Caramana, E. J.; Burton, D. E.; Shashkov, Mikhail J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 1, 227-262, 1998 · Zbl 0931.76080
[9] Chan, Jesse; Lin, Yimin; Warburton, Tim, Entropy stable modal discontinuous Galerkin schemes and wall boundary conditions for the compressible Navier-Stokes equations, J. Comput. Phys., 448, Article 110723 pp., 2022 · Zbl 1537.65127
[10] Dakin, Gautier; Després, Bruno; Jaouen, Stéphane, High-order staggered schemes for compressible hydrodynamics. Weak consistency and numerical validation, SIAM J. Sci. Comput., 376, 339-364, 2019 · Zbl 1416.76145
[11] Dobrev, V.; Kolev, Tz.; Rieben, R., High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34, 5, 606-641, 2012 · Zbl 1255.76076
[12] Engelman, M. S.; Sani, R. L.; Gresho, P. M., The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow, Int. J. Numer. Methods Fluids, 2, 3, 225-238, 1982 · Zbl 0501.76001
[13] Gaburro, Elena; Boscheri, Walter; Chiocchetti, Simone; Klingenberg, Christian; Springel, Volker; Dumbser, Michael, High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes, J. Comput. Phys., 407, Article 109167 pp., 2020 · Zbl 07504692
[14] Hindenlang, Florian J.; Gassner, Gregor J.; Kopriva, David A., Stability of wall boundary condition procedures for discontinuous Galerkin spectral element approximations of the compressible Euler equations, (Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, 2020, Springer International Publishing), 3-19 · Zbl 1484.65256
[15] Kolev, Tzanio V.; Fischer, Paul; Min, Misun; Dongarra, Jack; Brown, Jed; Dobrev, Veselin; Warburton, Timothy; Tomov, Stanimire; Shephard, Mark; Abdelfattah, Ahmad; Barra, Valeria; Beams, Natalie; Camier, Jean-Sylvain; Chalmers, Noel; Dudouit, Yohann; Karakus, Ali; Karlin, Ian; Kerkemeier, Stefan; Lan, Yu-Hsiang; Medina, David; Merzari, Elia; Obabko, Aleksandr; Pazner, Will; Rathnayake, Thilina; Smith, Cameron; Spies, Lukas; Świrydowicz, Kasia; Thompson, Jeremy; Tomboulides, Ananias; Tomov, Vladimir Z., Efficient exascale discretizations: high-order finite element methods, Int. J. High Perform. Comput. Appl., 35, 6, 527-552, 2021
[16] Laghos: high-order Lagrangian hydrodynamics miniapp, 2023
[17] Liu, Xiaodong; Morgan, Nathaniel R.; Burton, Donald E., A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme, J. Comput. Phys., 386, 110-157, 2019 · Zbl 1452.76123
[18] Love, E.; Scovazzi, G., On the angular momentum conservation and incremental objectivity properties of a predictor/multi-corrector method for Lagrangian shock hydrodynamics, Comput. Methods Appl. Mech. Eng., 198, 41-44, 3207-3213, 2009 · Zbl 1230.76036
[19] Mengaldo, Gianmarco; Grazia, Daniele De; Witherden, Freddie; Farrington, Antony; Vincent, Peter; Sherwin, Spencer; Peiró, Joaquim, A guide to the implementation of boundary conditions in compact high-order methods for compressible aerodynamics, (7th AIAA Theoretical Fluid Mechanics Conference, 2014)
[20] Menikoff, R.; Plohr, B. J., The Riemann problem for fluid flow of real materials, Rev. Mod. Phys., 61, 1, 75-130, 1989 · Zbl 1129.35439
[21] Nitsche, J. A., Uber ein Variationsprinzip zur Losung Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unteworfen sind, Abh. Math. Semin. Univ. Hamb., 36, 9-15, 1971 · Zbl 0229.65079
[22] Pandare, Aditya K.; Waltz, Jacob; Bakosi, Jozsef, Multi-material hydrodynamics with algebraic sharp interface capturing, Comput. Fluids, 215, Article 104804 pp., 2021 · Zbl 1521.76460
[23] Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J., Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations, J. Comput. Phys., 292, 88-113, 2015 · Zbl 1349.76639
[24] Sandu, Adrian; Tomov, Vladimir Z.; Cervena, Lenka; Kolev, Tzanio V., Conservative high-order time integration for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 43, 1, A221-A241, 2021 · Zbl 1462.65084
[25] Scovazzi, G.; Christon, M. A.; Hughes, T. J.R.; Shadid, J. N., Stabilized shock hydrodynamics: I. A Lagrangian method, Comput. Methods Appl. Mech. Eng., 196, 4, 923-966, 2007 · Zbl 1120.76334
[26] Scovazzi, G.; Song, T.; Zeng, X., A velocity/stress mixed stabilized nodal finite element for elastodynamics: analysis and computations with strongly and weakly enforced boundary conditions, Comput. Methods Appl. Mech. Eng., 325, 532-576, 2017 · Zbl 1439.74148
[27] Scovazzi, Guglielmo; Love, Edward; Shashkov, M. J., Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: theoretical framework and two-dimensional computations, Comput. Methods Appl. Mech. Eng., 197, 9-12, 1056-1079, 2008 · Zbl 1169.76396
[28] Sedov, Leonid I., Similarity and Dimensional Methods in Mechanics, 1993, CRC Press: CRC Press Boca Raton, FL
[29] Song, T.; Scovazzi, G., A Nitsche method for wave propagation problems in time domain, Comput. Methods Appl. Mech. Eng., 293, 481-521, 2015 · Zbl 1423.35072
[30] Song, Ting; Main, Alex; Scovazzi, Guglielmo; Ricchiuto, Mario, The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows, J. Comput. Phys., 369, 45-79, 2018 · Zbl 1392.76010
[31] Vargas, Arturo; Stitt, Thomas M.; Weiss, Kenneth; Tomov, Vladimir Z.; Camier, Jean-Sylvain; Kolev, Tzanio; Rieben, Robert N., Matrix-free approaches for GPU acceleration of a high-order finite element hydrodynamics application using MFEM, Umpire, and RAJA, Int. J. High Perform. Comput. Appl., 36, 4, 492-509, 2022
[32] Von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 3, 232-237, March 1950 · Zbl 0037.12002
[33] Warburton, T.; Hesthaven, J. S., On the constants in hp-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Eng., 192, 2765-2773, 2003 · Zbl 1038.65116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.