×

Estimating permeability of 3D micro-CT images by physics-informed CNNs based on DNS. (English) Zbl 1514.86001

Summary: In recent years, convolutional neural networks (CNNs) have experienced an increasing interest in their ability to perform a fast approximation of effective hydrodynamic parameters in porous media research and applications. This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples. The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM) that simulate the flow through the pore space of the segmented image data. We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner. As such, we circumvent the convergence issues of LBM that frequently are observed on complex pore geometries, and therefore, improve the generality and accuracy of our training data set. Using the DNS-computed permeabilities, a physics-informed CNN (PhyCNN) is trained by additionally providing a tailored characteristic quantity of the pore space. More precisely, by exploiting the connection to flow problems on a graph representation of the pore space, additional information about confined structures is provided to the network in terms of the maximum flow value, which is the key innovative component of our workflow. The robustness of this approach is reflected by very high prediction accuracy, which is observed for a variety of sandstone samples from archetypal rock formations.

MSC:

86-08 Computational methods for problems pertaining to geophysics
68T07 Artificial neural networks and deep learning
76S05 Flows in porous media; filtration; seepage

References:

[1] Emmy Compute-Cluster: RRZE, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (2021)
[2] Aggarwal, CC, Neural Networks and Deep Learning, vol. 25, 497-497 (2018), Berlin: Springer International Publishing, Berlin · Zbl 1402.68001 · doi:10.1007/978-3-319-94463-0
[3] Alpak, FO; Gray, F.; Saxena, N.; Dietderich, J.; Hofmann, R.; Berg, S., A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images, Comput. Geosci., 22, 3, 815-832 (2018) · Zbl 1405.86017 · doi:10.1007/s10596-018-9727-7
[4] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J-S; Dobrev, JCV; Dudouit, Y.; Fisher, A.; Kolev, T.; Pazner, W.; Stowell, M.; Tomov, V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: A modular finite element library, Comput. Math. Appl., 81, 42-74 (2021) · Zbl 1524.65001 · doi:10.1016/j.camwa.2020.06.009
[5] Araya-Polo, M.; Alpak, FO; Hunter, S.; Hofmann, R.; Saxena, N., Deep learning-driven permeability estimation from 2D images, Comput. Geosci., 24, 2, 571-580 (2019) · doi:10.1007/s10596-019-09886-9
[6] Araya-Polo, M.; Jennings, J.; Adler, A.; Dahlke, T., Deep-learning tomography, Lead. Edge, 37, 58-66 (2018) · doi:10.1190/tle37010058.1
[7] Benzi, M.; Golub, GH; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034 · doi:10.1017/s0962492904000212
[8] Bhatnagar, PL; Gross, EP; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511-525 (1954) · Zbl 0055.23609 · doi:10.1103/physrev.94.511
[9] Bruus, H.: Theoretical Microfluidics. Oxford Master Series in Physics. OUP Oxford (2008)
[10] Bultreys, T.; Boever, WD; Cnudde, V., Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art, Earth-Sci. Revi, 155, 93-128 (2016) · doi:10.1016/j.earscirev.2016.02.001
[11] Cheng, C.; Zhang, G-T, Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems, Water, 13, 4, 423 (2021) · doi:10.3390/w13040423
[12] Cormen, TH; Leiserson, CE; Rivest, RL; Stein, C., Introduction to Algorithms (2001), Cambridge: The MIT Press, Cambridge · Zbl 1047.68161
[13] Elman, HC; Silvester, DJ; Wathen, AJ, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation (2014), New York: Oxford University Press, New York · Zbl 1304.76002 · doi:10.1093/acprof:oso/9780199678792.001.0001
[14] Ern, A.; Guermond, JL, Theory and Practice of Finite Elements. Applied Mathematical Sciences (2004), Berlin: Springer, Berlin · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[15] Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Bruaset, A.M., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, pp 267-294 (2006), doi:10.1007/3-540-31619-1_8 · Zbl 1097.65059
[16] Frank, F.; Liu, C.; Alpak, FO; Rivière, B., A finite volume / discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging, Computat. Geosci., 22, 2, 543-563 (2018) · Zbl 1405.65104 · doi:10.1007/s10596-017-9709-1
[17] Gärttner, S., Frank, F.: RTSPHEM - reactive transport solver in porous homogenized evolving media. Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg. doi:10.5281/zenodo.5166669, https://github.com/cupperfreeze/RTSPHEM/. Accessed 5 Dec 2022 (2021)
[18] Gärttner, S.; Frolkovič, P.; Knabner, P.; Ray, N., Efficiency of micro-macro models for reactive two-mineral systems, Multiscale Model. Simul., 20, 1, 433-461 (2022) · Zbl 1507.35177 · doi:10.1137/20m1380648
[19] Gmeiner, B.; Huber, M.; John, L.; Rüde, U.; Wohlmuth, B., A quantitative performance study for Stokes solvers at the extreme scale, J. Comput. Sci., 17, 509-521 (2016) · doi:10.1016/j.jocs.2016.06.006
[20] Gong, L.; Nie, L.; Xu, Y., Geometrical and topological analysis of pore space in sandstones based on X-ray computed tomography, Energies, 13, 15, 3774 (2020) · doi:10.3390/en13153774
[21] Graczyk, K.M., Matyka, M.: Predicting porosity, permeability, and tortuosity of porous media from images by deep learning. Sci. Rep. 10(1). doi:10.1038/s41598-020-78415-x (2020)
[22] Guibert, R.; Nazarova, M.; Horgue, P.; Hamon, G.; Creux, P.; Debenest, G., Computational permeability determination from pore-scale imaging: sample size, mesh and method sensitivities, Transp. Porous Med., 107, 3, 641-656 (2015) · doi:10.1007/s11242-015-0458-0
[23] Hong, J.; Liu, J., Rapid estimation of permeability from digital rock using 3D convolutional neural network, Comput. Geosci., 24, 4, 1523-1539 (2020) · Zbl 1439.86040 · doi:10.1007/s10596-020-09941-w
[24] Hopcroft, J.; Tarjan, R., Algorithm 447: efficient algorithms for graph manipulation, Commun. ACM, 16, 6, 372-378 (1973) · doi:10.1145/362248.362272
[25] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G., The Lattice Boltzmann Method, 720-720 (2016), Berlin: Springer International Publishing, Berlin
[26] LeNail, A., NN-SVG: Publication-ready neural network architecture schematics, J. Open Source Softw., 4, 33, 747 (2019) · doi:10.21105/joss.00747
[27] Liao, Q., Jen, T.-C.: Computational Fluid Dynamics. IntechOpen, pp. 410. doi:10.5772/10585(2011)
[28] Liu, C.; Frank, F.; Alpak, FO; Rivière, B., An interior penalty discontinuous Galerkin approach for 3D incompressible Navier-Stokes equation for permeability estimation of porous media, J. Comput. Phys., 396, 669-686 (2019) · Zbl 1452.76095 · doi:10.1016/j.jcp.2019.06.052
[29] Lu, L., Dying ReLU and initialization: theory and numerical examples, Commun. Comput. Phys., 28, 5, 1671-1706 (2020) · Zbl 1507.68248 · doi:10.4208/cicp.oa-2020-0165
[30] Lu, X.; Giovanis, DG; Yvonnet, J.; Papadopoulos, V.; Detrez, F.; Bai, J., A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites, Comput. Mech., 64, 2, 307-321 (2018) · Zbl 1464.74404 · doi:10.1007/s00466-018-1643-0
[31] MATLAB: Version 9.10.0.1602886 (R2021a). Natick, Massachusetts: The MathWorks Inc. (2021)
[32] Neumann, R.F., Barsi-Andreeta, M., Lucas-Oliveira, E., Barbalho, H., Trevizan, W.A., Bonagamba, T.J., Steiner, M.: High accuracy capillary network representation in digital rock reveals permeability scaling functions. Sci. Rep. 11(1). doi:10.1038/s41598-021-90090-0 (2021)
[33] Neumann, R., Andreeta, M., Lucas-Oliveira, E.: 11 Sandstones: raw, filtered and segmented data. http://www.digitalrocksportal.org/projects/317, doi:10.17612/f4h1-w124 (2020)
[34] Pearson, JW; Pestana, J.; Silvester, DJ, Refined saddle-point preconditioners for discretized Stokes problems, Numer. Math., 138, 2, 331-363 (2017) · Zbl 1408.76371 · doi:10.1007/s00211-017-0908-4
[35] Prifling, B., Röding, M., Townsend, P., Neumann, M., Schmidt, V.: Large-scale statistical learning for mass transport prediction in porous materials using 90,000 artificially generated microstructures. Front. Mater. 8. doi:10.3389/fmats.2021.786502 (2021)
[36] Rozložník, M., Saddle-Point Problems and their Iterative Solution. Neças Center Series (2018), Berlin: Springer International Publishing, Berlin · Zbl 1494.65001 · doi:10.1007/978-3-030-01431-5
[37] Santos, JE; Xu, D.; Jo, H.; Landry, CJ; Prodanović, M.; Pyrcz, MJ, PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media, Adv. Water Resour., 138, 103539 (2020) · doi:10.1016/j.advwatres.2020.103539
[38] Santos, JE; Yin, Y.; Jo, H.; Pan, W.; Kang, Q.; Viswanathan, HS; Prodanovič̌, M.; Pyrcz, MJ; Lubbers, N., Computationally efficient multiscale neural networks applied to fluid flow in complex 3D porous media, Transp. Porous Med., 140, 1, 241-272 (2021) · doi:10.1007/s11242-021-01617-y
[39] Saxena, N.; Hofmann, R.; Alpak, FO; Berg, S.; Dietderich, J.; Agarwal, U.; Tandon, K.; Hunter, S.; Freeman, J.; Wilson, OB, References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks, Adv. Water Resour., 109, 211-235 (2017) · doi:10.1016/j.advwatres.2017.09.007
[40] Saxena, N.; Hows, A.; Hofmann, R.; Alpak, FO; Dietderich, J.; Appel, M.; Freeman, J.; De Jong, H., Rock properties from micro-CT images: Digital rock transforms for resolution, pore volume, and field of view, Adv. Water Resour., 134, 103419 (2019) · doi:10.1016/j.advwatres.2019.103419
[41] Schulz, R.; Ray, N.; Zech, S.; Rupp, A.; Knabner, P., Beyond Kozeny-Carman: Predicting the permeability in porous media, Transp. Porous Med., 130, 2, 487-512 (2019) · doi:10.1007/s11242-019-01321-y
[42] Siena, M.; Hyman, JD; Riva, M.; Guadagnini, A.; Winter, CL; Smolarkiewicz, PK; Gouze, P.; Sadhukhan, S.; Inzoli, F.; Guédon, G.; Colombo, E., Direct numerical simulation of fully saturated flow in natural porous media at the pore scale: a comparison of three computational systems, Comput. Geosci., 19, 2, 423-437 (2015) · doi:10.1007/s10596-015-9486-7
[43] Sudakov, O.; Burnaev, E.; Koroteev, D., Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks, Comput. Geosci., 127, 91-98 (2019) · doi:10.1016/j.cageo.2019.02.002
[44] Sun, H.; Al-Marzouqi, H.; Vega, V., EPCI: A new tool for predicting absolute permeability from computed tomography images, Geophysics, 84, 3, F97-F102 (2019) · doi:10.1190/geo2018-0653.1
[45] Tang, P.; Zhang, D.; Li, H., Predicting permeability from 3D rock images based on CNN with physical information, J. Hydrol., 606, 127473 (2022) · doi:10.1016/j.jhydrol.2022.127473
[46] Tembely, M.; AlSumaiti, AM; Alameri, WS, Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography, Energy Rep., 7, 1460-1472 (2021) · doi:10.1016/j.egyr.2021.02.065
[47] Tölke, J., Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA, Comput. Vis. Sci., 13, 1, 29-39 (2008) · doi:10.1007/s00791-008-0120-2
[48] Viswanathan, H.; Hyman, J.; Karra, S.; O’Malley, D.; Srinivasan, S.; Hagberg, A.; Srinivasan, G., Advancing graph-based algorithms for predicting flow and transport in fractured rock, Water Resour. Res., 54, 9, 6085-6099 (2018) · doi:10.1029/2017wr022368
[49] Wagner, A.; Eggenweiler, E.; Weinhardt, F.; Trivedi, Z.; Krach, D.; Lohrmann, C.; Jain, K.; Karadimitriou, N.; Bringedal, C.; Voland, P.; Holm, C.; Class, H.; Steeb, H.; Rybak, I., Permeability estimation of regular porous structures: a benchmark for comparison of methods, Transp. Porous Med., 138, 1, 1-23 (2021) · doi:10.1007/s11242-021-01586-2
[50] Wang, YD; Blunt, MJ; Armstrong, RT; Mostaghimi, P., Deep learning in pore scale imaging and modeling, Earth-Sci. Rev., 215, 103555 (2021) · doi:10.1016/j.earscirev.2021.103555
[51] Wathen, AJ, Preconditioning, Acta Numer., 24, 329-376 (2015) · Zbl 1316.65039 · doi:10.1017/S0962492915000021
[52] Wildenschild, D.; Sheppard, AP, X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Adv. Water Resour., 51, 217-246 (2013) · doi:10.1016/j.advwatres.2012.07.018
[53] Wu, J.; Yin, X.; Xiao, H., Seeing permeability from images: Fast prediction with convolutional neural networks, Sci. Bull., 63, 18, 1215-1222 (2018) · doi:10.1016/j.scib.2018.08.006
[54] Yang, X.; Mehmani, Y.; Perkins, WA; Pasquali, A.; Schönherr, M.; Kim, K.; Perego, M.; Parks, ML; Trask, N.; Balhoff, MT; Richmond, MC; Geier, M.; Krafczyk, M.; Luo, L-S; Tartakovsky, AM; Scheibe, TD, Intercomparison of 3D pore-scale flow and solute transport simulation methods, Adv. Water Resour., 95, 176-189 (2016) · doi:10.1016/j.advwatres.2015.09.015
[55] Yang, Z.: Analysis of lattice Boltzmann boundary conditions. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-35079. PhD thesis. Konstanz: Universität Konstanz (2007)
[56] Zhou, Y., Wu, Y.: Analyses on influence of training data set to neural network supervised learning performance. In: Jin, D., Lin, S. (eds.) Advances in Computer Science, Intelligent System and Environment. doi:10.1007/978-3-642-23753-9_4, p 19?25. Springer, Berlin (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.