×

Analytical and Rothe time-discretization method for a Boussinesq-type system over an uneven bottom. (English) Zbl 1472.65113

The authors consider the analytical and numerical resolution of a 2D version of a Boussinesq-type model which occur in the water wave propagation. The time discretization is performed using a finite-difference second-order Crank-Nicholson-type scheme, and then, at each time step, the spatial variables are discretized with an efficient Galerkin/Finite Element Method (FEM) using triangular-finite elements based on 2D piecewise-linear Lagrange interpolation. Some numerical tests are presented to support the theoretical results.

MSC:

65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B25 Solitary waves for incompressible inviscid fluids
35Q35 PDEs in connection with fluid mechanics

Software:

FEniCS; Gmsh
Full Text: DOI

References:

[1] Peregrine, D., Long waves on a beach, J Fluid Mech, 27, 815-827 (1967) · Zbl 0163.21105
[2] Madsen, A.; Murray, R.; Sørensen, O., A new form of the Boussinesq equations with improved linear dispersion characteristics (Part 1), Coastal Eng, 15, 371-388 (1991)
[3] Madsen, P.; Sørensen, O., A new form of the Boussinesq equations with improved linear dispersion characteristics, part 2: a slowly-varying bathymetry, Coastal Eng, 18, 183-205 (1992)
[4] Wei, G.; Kirby, J.; Grilli, S.; Subramanya, R., A fully nonlinear Boussinesq model for surface waves. part I: highly nonlinear unsteady waves, J Fluid Mech, 294, 71-92 (1995) · Zbl 0859.76009
[5] Nwogu, O., Alternative form of Boussinesq equations for nearshore wave propagation, J Waterway, Port, Coastal and Ocean Engineering, 119, 618-638 (1993)
[6] Chen, M., Numerical investigation of a two-dimensional Boussinesq system, Discrete Contin Dyn Syst, 23, 4, 1169-1190 (2009) · Zbl 1155.35409
[7] Chen, M., Equations for bi-directional waves over an uneven bottom, Math Comput Simul, 62, 1-2, 3-9 (2003) · Zbl 1013.76014
[8] Mejía, L., Estudio analítico y numérico de un modelo bidimensional para la propagación de ondas en la superficie de un canal con fondo irregular (2019), Doctoral dissertation, Universidad del Valle, Cali, Colombia
[9] Mitsotakis, D.; Ilan, B.; Dutykh, D., On the Galerkin/finite-element method for the Serre equations, J Sci Comput, 61, 1, 166-195 (2014) · Zbl 1299.76026
[10] Mitsotakis, D.; Synolakis, C.; McGuinness, M., A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system, Int J Num Meth Fluids, 83, 10, 755-778 (2017)
[11] Dougalis, V.; Mitsotakis, D.; Saut, J., On some Boussinesq systems in two space dimensions: theory and numerical analysis, ESAIM: Mathematical Modelling and Numerical Analysis, 41, 5, 825-854 (2007) · Zbl 1140.76314
[12] Chen, M., Numerical investigation of a two-dimensional Boussinesq system, Discrete Contin Dyn Syst, 28, 4, 1169-1190 (2009) · Zbl 1155.35409
[13] Dougalis, V.; Mitsotakis, D.; Saut, J., On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain, Disct Contin Dyn Sys, 23, 4, 1191-1204 (2009) · Zbl 1155.35431
[14] Karakoc, S.; Bhowmik, S., Numerical solutions of the generalized equal width wave equation using the Petrov-Galerkin method, Appl Anal (2019)
[15] Karakoc, S.; Bhowmik, S., Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-splines, Computers & Mathematics with Applications, 77, 7, 1917-1932 (2019) · Zbl 1442.65262
[16] Karakoc, S. B.G.; Ak, T., Numerical solution of Rosenau-KDV equation using subdomain finite element method, New Trends in Mathematical Sciences, 4, 1, 223-235 (2016)
[17] Ak, T.; Karakoc, S. B.G.; Biswas, A., Numerical scheme to dispersive shallow water waves, J Comput Theor Nanosci, 13, 10, 7084-7092 (2016)
[18] Logg, A.; Mardal, K.; Wells, G., Automated solution of differential equations by the finite element method (2011), Springer
[19] Lopes, N.; Pereira, P.; Trabucho, L., Improved Boussinesq equations for surface water waves (2011), Chapter 25, pp. 471-504 in Automated Scientific Computing: The FEniCS book, A. Logg, K.A. Mardal, G. Wells Eds. Springer-Verlag
[20] Sadaka, G., Solution of 2d boussinesq systems with freefem++: the flat bottom case, J Numer Math, 20, 3-4, 303-324 (2012) · Zbl 1426.76301
[21] Dougalis, V.; Mitsotakis, D.; Saut, J., Boussinesq systems of Bona-Smith type on plane domains: theory and numerical analysis, J Sci Comput, 44, 109-135 (2010) · Zbl 1203.65179
[22] Guazzeli, E.; Rey, V.; Belzons, M., Higher order Bragg reflection of gravity surface waves by periodic beds, J Fluid Mech, 245, 301-317 (1992)
[23] Mitsotakis, D., Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves, Math Comp Simul, 80, 860-873 (2009) · Zbl 1256.35089
[24] Kennedy, A.; Kirby, J.; Chen, Q.; Dalrymple, R., Boussinesq-type equations with improved nonlinear performance, Wave Motion, 33, 225-243 (2001) · Zbl 1074.76547
[25] Brocchini, M., A reasonable overview on Boussinesq-type models: the interplay between physics, mathematics and numerics, Proc Math Phys Eng Sci, 469, 2160, 20130496 (2013) · Zbl 1371.35245
[26] Khakimzyanov, G.; Dutykh, D.; Fedotova, Z.; Mitsotakis, D., Dispersive shallow water wave modelling. Part I: model derivation on a globally flat space, Commun Comput Phys, 23, 1, 1-29 (2018) · Zbl 1488.76018
[27] rensen, O. S.; Shäffer, H.; rensen, L. S., Boussinesq-type modeling using unstructured finite element technique, Coastal Eng, 50, 181-198 (2004)
[28] Walkley, M.; Berzins, M., A finite element method for the two-dimensional extended boussinesq equations, Int J Numer Meth Fluids, 39, 865-885 (2002) · Zbl 1101.76362
[29] Wong W.W.-Y.. Lecture notes on Sobolev spaces for CCA; 2010. http://sma.epfl.ch/ wwywong/papers/sobolevnotes.pdf.
[30] Behzadan, A.; Holst, M., Multiplication in sobolev spaces, revisited, arXiv preprint arXiv:151207379 (2015)
[31] Evans, L. C., Partial differential equations (2010), American Mathematical Society · Zbl 1194.35001
[32] Hackbusch, W., Elliptic differential equations: theory and numerical treatment, 18 (2017), Springer · Zbl 1379.35001
[33] Martin, R., Nonlinear operators and differential equations in Banach spaces (1976), Wiley · Zbl 0333.47023
[34] Geuzaine, C.; Remacle, J., Gmsh: a three-dimensional finite element mesh generator with built-in and pre- and post-processing facilities, Int J Num Meth Eng, 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[35] Ciarlet, P., The finite element method for elliptic problems, Classics in applied mathematics, 40, 1-511 (2002) · Zbl 0999.65129
[36] Strikwerda, J., Finite difference schemes and partial differential equations, 88 (2004), Siam · Zbl 1071.65118
[37] Kampanis, N.; Dougalis, V.; Ekaterinaris, J., Effective computational methods for wave propagation (2019), Chapman and Hall/CRC
[38] Grilli, S.; Subramanya, R.; Svendsen, I.; Veeramony, J., Shoaling of solitary waves on plane beaches, J Waterway, Port, Coastal and Ocean Eng, 120, 609-628 (1994)
[39] Grilli, S.; Svendsen, I.; Subramanya, R., Breaking criterion and characteristics for solitary waves on slopes, J Waterway, Port, Coastal and Ocean Eng, 123, 102-112 (1997)
[40] Synolakis, C., Green law and the evolution of solitary waves, Phys Fluids, 3, 490-491 (1991)
[41] Synolakis, C.; Skjelbreia, J., Evolution of maximum amplitude of solitary waves on plane beaches, J Waterway, Port, Coastal and Ocean Eng, 119, 323-342 (1993)
[42] Mitsotakis, D.; Synolakis, C.; Mcguinness, M., A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system, Intern J Numer Meth Fluids, 83, 10, 755-778 (2017)
[43] Andrade, D.; Nachbin, A., A three-dimensional Dirichlet-to-Neumann operator for water waves over topography, J Fluid Mech, 845, 321-345 (2018) · Zbl 1404.76033
[44] Liu, H.; Zeng, H.; Huang, H., Bragg resonant reflection of surface waves from deep water to shallow water by a finite array of trapezoidal bars, Appl Ocean Res, 94, 101976 (2020)
[45] Davies, A., On the interaction between surface waves and undulations on the seabed, J Mar Res, 40, 2, 331-368 (1982)
[46] Davies, A., The reflection of wave energy by undulations on the seabed, Dyn Atmos Oceans, 6, 4, 207-232 (1982)
[47] Heathershaw, A., Seabed-wave resonance and sand bar growth, Nature, 296, 5855, 343-345 (1982)
[48] Davies, A.; Heathershaw, A., Surface-wave propagation over sinusoidally varying topography, J Fluid Mech, 114, 419-443 (1984)
[49] Tao, A.; Yan, J.; Wang, Y.; Zheng, J.; Fan, J.; Qin, C., Wave power focusing due to the Bragg resonance, China Ocean Eng, 31, 4, 458-465 (2017)
[50] Dutykh, D.; Kalisch, H., Boussinesq modeling of surface waves due to underwater landslides, Nonlin Processes Geophys, 20, 267-285 (2013)
[51] Wu, T. Y., Generation of upstream advancing solitons by moving disturbances, J Fluid Mech, 184, 75-99 (1987) · Zbl 0644.76017
[52] Dutykh, D.; Dias, F., Water waves generated by a moving bottom, Tsunami and nonlinear waves, 65-96 (2007) · Zbl 1310.76021
[53] Tjandra, S.; Pudjaprasetya, S., A non-hydrostatic numerical scheme for dispersive waves generated by bottom motion, Wave Motion, 57, 245-256 (2015) · Zbl 1524.76250
[54] Fuhrman, D.; Madsen, P., Tsunami generation, propagation, and run up with high order Boussinesq model, Coast Eng, 56, 747-758 (2009)
[55] Hammack, J., A note on tsunamis: their generation and propagation in an ocean of uniform depth, J Fluid Mech, 4, 769-799 (1973) · Zbl 0273.76010
[56] Hammack, J.; Segur, H., The Korteweg-de Vries equation and water waves. Part 2: comparison with experiment, J Fluid Mech, 65, 289-314 (1974) · Zbl 0373.76010
[57] Hammack, J.; Segur, H., The Korteweg-de Vries equation and water waves. Part 3: oscillatory waves, J Fluid Mech, 84, 337-358 (1978) · Zbl 0373.76011
[58] Kervella, Y.; Dutykh, D.; Dias, F., Comparison between three-dimensional linear and nonlinear tsunami generation models, Theor Comput Fluid Dyn, 21, 245-269 (2007) · Zbl 1161.76440
[59] Saito, T.; Furumura, T., Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory, Geophys J Int, 178, 877-888 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.