×

Geometric mean of bimetric spacetimes. (English) Zbl 1481.83084

Summary: We use the geometric mean to parametrize metrics in the Hassan-Rosen ghost-free bimetric theory and pose the initial-value problem. The geometric mean of two positive definite symmetric matrices is a well-established mathematical notion which can be under certain conditions extended to quadratic forms having the Lorentzian signature, say metrics \(g\) and \(f\). In such a case, the null cone of the geometric mean metric \(h\) is in the middle of the null cones of \(g\) and \(f\) appearing as a geometric average of a bimetric spacetime. The parametrization based on \(h\) ensures the reality of the square root in the ghost-free bimetric interaction potential. Subsequently, we derive the standard \(n + 1\) decomposition in a frame adapted to the geometric mean and state the initial-value problem, that is, the evolution equations, the constraints, and the preservation of the constraints equation.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
53Z05 Applications of differential geometry to physics
58J47 Propagation of singularities; initial value problems on manifolds
54B15 Quotient spaces, decompositions in general topology

Software:

mftoolbox

References:

[1] Hassan, S. F.; Rosen, R. A., Bimetric gravity from ghost-free massive gravity, J. High Energy Phys. (2012) · Zbl 1309.83083 · doi:10.1007/jhep02(2012)126
[2] Hassan, S. F.; Rosen, R. A., Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, J. High Energy Phys. (2012) · Zbl 1348.83065 · doi:10.1007/jhep04(2012)123
[3] Hassan, S. F.; Kocic, M., On the local structure of spacetime in ghost-free bimetric theory and massive gravity, J. High Energy Phys., 05 (2018) · Zbl 1391.83092 · doi:10.1007/JHEP05(2018)099
[4] Hassan, S. F.; Lundkvist, A., Analysis of constraints and their algebra in bimetric theory, J. High Energy Phys., 08 (2018) · Zbl 1396.83034 · doi:10.1007/JHEP08(2018)182
[5] de Rham, C.; Gabadadze, G., Generalization of the Fierz-Pauli action, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.044020
[6] de Rham, C.; Gabadadze, G.; Tolley, A. J., Resummation of massive gravity, Phys. Rev. Lett., 106 (2011) · doi:10.1103/physrevlett.106.231101
[7] Hassan, S. F.; Rosen, R. A., Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett., 108 (2012) · doi:10.1103/physrevlett.108.041101
[8] Boulware, D. G.; Deser, S., Can gravitation have a finite range?, Phys. Rev. D, 6, 3368-3382 (1972) · doi:10.1103/physrevd.6.3368
[9] Lüben, M.; Mörtsell, E.; Schmidt-May, A., Bimetric cosmology is compatible with local tests of gravity, Class. Quantum Grav., 37 (2020) · doi:10.1088/1361-6382/ab4f9b
[10] Schmidt-May, A.; Strauss, M. v., Recent developments in bimetric theory, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1345.83003 · doi:10.1088/1751-8113/49/18/183001
[11] de Rham, C., Massive gravity, Living Rev. Relativ., 17, 7 (2014) · Zbl 1320.83018 · doi:10.12942/lrr-2014-7
[12] Shibata, M., Numerical Relativity. 100 Years of General Relativity (2015), Singapore: World Scientific, Singapore
[13] Baumgarte, T.; Shapiro, S., Numerical Relativity (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.83001 · doi:10.1017/CBO9781139193344
[14] Gourgoulhon, É., 3 + 1 Formalism in General Relativity: Bases of Numerical Relativity (2012), Berlin: Springer, Berlin · Zbl 1254.83001 · doi:10.1007/978-3-642-24525-1
[15] Alcubierre, M., Introduction to 3+1 Numerical Relativity (2012), Oxford: Oxford University Press, Oxford · Zbl 1246.83002
[16] Bona, C.; Palenzuela-Luque, C.; Bona-Casas, C., Elements of Numerical Relativity and Relativistic Hydrodynamics: from Einstein’s Equations to Astrophysical simulations (2009), Berlin: Springer, Berlin · Zbl 1176.85001 · doi:10.1007/978-3-642-01164-1
[17] Higham, N., Functions of Matrices: Theory and Computation (2008), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1167.15001 · doi:10.1137/1.9780898717778
[18] Pusz, W.; Woronowicz, S. L., Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys., 8, 159-170 (1975) · Zbl 0327.46032 · doi:10.1016/0034-4877(75)90061-0
[19] York, J. W.; Smarr, L. L., Kinematics and Dynamics of General Relativity, 83-126 (1979), Cambridge: Cambridge University Press, Cambridge · Zbl 0418.58016
[20] Choquet-Bruhat, Y., General Relativity and the Einstein Equations (2008), Oxford:: Oxford Mathematical Monographs, Oxford: · doi:10.1093/acprof:oso/9780199230723.001.0001
[21] Damour, T.; Kogan, I. I., Effective Lagrangians and universality classes of nonlinear bigravity, Phys. Rev. D, 66 (2002) · doi:10.1103/physrevd.66.104024
[22] Hassan, S. F.; Schmidt-May, A.; von Strauss, M., Particular solutions in bimetric theory and their implications, Int. J. Mod. Phys. D, 23, 1443002 (2014) · Zbl 1314.83039 · doi:10.1142/s0218271814430020
[23] Macdonald, I. G., Symmetric Functions and Orthogonal Polynomials (1998), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0887.05053
[24] Hassan, S. F.; Kocic, M.; Schmidt-May, A., Absence of ghost in a new bimetric-matter coupling (2014)
[25] Kocic, M.; Lundkvist, A.; Torsello, F., On the ratio of lapses in bimetric relativity, Class. Quantum Grav., 36 (2019) · Zbl 1478.83204 · doi:10.1088/1361-6382/ab497a
[26] Alexandrov, S.; Krasnov, K.; Speziale, S., Chiral description of ghost-free massive gravity, J. High Energy Phys. (2013) · Zbl 1342.83043 · doi:10.1007/jhep06(2013)068
[27] Alexandrov, S., Canonical structure of tetrad bimetric gravity, Gen. Relativ. Gravit., 46, 1639 (2014) · Zbl 1286.83006 · doi:10.1007/s10714-013-1639-1
[28] Frittelli, S., Note on the propagation of the constraints in standard 3+1 general relativity, Phys. Rev. D, 55, 5992-5996 (1997) · doi:10.1103/physrevd.55.5992
[29] Courant, R.; Hilbert, D., Methods of Mathematical Physics (1962), New York: Interscience Publishers, New York · Zbl 0099.29504
[30] Kocic, M., Causal propagation of constraints in bimetric relativity in standard 3 + 1 form, J. High Energy Phys. (2019) · Zbl 1427.83071 · doi:10.1007/jhep10(2019)219
[31] Baumgarte, T.; Shapiro, S., Numerical Relativity: Solving Einstein’s Equations on the Computer (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.83001 · doi:10.1017/CBO9781139193344
[32] Strauss, M. V.; Schmidt-May, A.; Enander, J.; Mörtsell, E.; Hassan, S. F., Cosmological solutions in bimetric gravity and their observational tests, J. Cosmol. Astropart. Phys. (2012) · doi:10.1088/1475-7516/2012/03/042
[33] Torsello, F.; Kocic, M.; Mortsell, E., Classification and asymptotic structure of black holes in bimetric theory, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.064003
[34] Bhatia, R., Positive definite matrices, Princeton Series in Applied Mathematics (2009), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1321.15003 · doi:10.1515/9781400827787
[35] Ando, T.; Li, C-K; Mathias, R., Geometric means, Linear Algebr. Appl., 385, 305-334 (2004) · Zbl 1063.47013 · doi:10.1016/j.laa.2003.11.019
[36] Bhatia, R.; Holbrook, J., Riemannian geometry and matrix geometric means, Linear Algebr. Appl., 413, 594-618 (2006) · Zbl 1088.15022 · doi:10.1016/j.laa.2005.08.025
[37] Lawson, J. D.; Lim, Y., The geometric mean, matrices, metrics, and more, Am. Math. Monthly, 108, 797-812 (2001) · Zbl 1040.15016 · doi:10.2307/2695553
[38] Bhatia, R.; Karandikar, R. L., Monotonicity of the matrix geometric mean, Math. Ann., 353, 1453-1467 (2012) · Zbl 1253.15047 · doi:10.1007/s00208-011-0721-9
[39] Torsello, F.; Kocic, M.; Högås, M.; Mortsell, E., Spacetime symmetries and topology in bimetric relativity, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.084022
[40] Kocic, M.; Torsello, F.; Högås, M.; Mörtsell, E., Initial data and first evolutions of dust clouds in bimetric relativity, Class. Quantum Grav., 37 (2020) · Zbl 1479.83204 · doi:10.1088/1361-6382/ab87d8
[41] Shibata, M.; Nakamura, T., Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D, 52, 5428-5444 (1995) · Zbl 1250.83027 · doi:10.1103/physrevd.52.5428
[42] Baumgarte, T. W.; Shapiro, S. L., On the numerical integration of Einstein’s field equations, Phys. Rev. D, 59 (1999) · Zbl 1250.83004 · doi:10.1103/physrevd.59.024007
[43] Torsello, F.; Kocic, M.; Högås, M.; Mörtsell, E., Covariant BSSN formulation in bimetric relativity, Class. Quantum Grav., 37 (2020) · Zbl 1478.83213 · doi:10.1088/1361-6382/ab56fc
[44] Deffayet, C.; Mourad, J.; Zahariade, G., A note on ‘symmetric’ vielbeins in bimetric, massive, perturbative and non perturbative gravities, J. High Energy Phys. (2013) · Zbl 1342.83067 · doi:10.1007/jhep03(2013)086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.