×

On the \(C^*\)-valued triangle equality and inequality in Hilbert \(C^*\)-modules. (English) Zbl 1174.47012

In the paper, it is proved that if \(\mathcal{A}\) is a \(C^{\ast }\)-algebra and \(a,b\in \mathcal{A}\), then \(\left| a+b\right| =\left| a\right| +\left| b\right| \) if and only if \(a^{\ast }b=\left| a\right| \left| b\right| \). From this result, it is deduced that if \(V\) is a Hilbert \(C^{\ast }\)-module over a \(C^{\ast }\)-algebra and \(x,y\in V\), then \(\left| x+y\right| =\left| x\right| +\left| y\right| \) if and only if \(\left\langle x,y\right\rangle =\left| x\right| \left| y\right| \). The proof uses the result proved by T. Ando and T. Hayashi [J. Oper. Theory 58, No. 1, 463–468 (2007; Zbl 1150.47001)], in the case \(\mathcal{A}=\mathbb {B}\left( H\right) \). Related questions are also investigated.

MSC:

47A63 Linear operator inequalities
46L08 \(C^*\)-modules

Citations:

Zbl 1150.47001
Full Text: DOI

References:

[1] C. A. Akemann, J. Anderson and G. K. Pedersen, Triangle inequalities in operator algebras, Linear and Multilinear Algebra, 11 (1982), 167–178. · Zbl 0485.46029 · doi:10.1080/03081088208817440
[2] T. Ando and T. Hayashi, A characterization of the operator-valued triangle equality, to be published in Journal of Operator Theory ( http://arxiv.org ).
[3] Lj. Arambašić and R. Rajić, On some norm equalities in pre-Hilbert C*-modules, Linear Algebra Appl., 414 (2006), 19–28. · Zbl 1100.47006 · doi:10.1016/j.laa.2005.09.006
[4] D. Bakić and B. Guljaš, On a class of module maps of Hilbert C*-modules, Math. Commun., 7 (2002), 177–192. · Zbl 1031.46066
[5] J. Dixmier, C*-Algebras, North-Holland (Amsterdam, 1981).
[6] D. R. Farenick and P. J. Psarrakos, A triangle inequality in Hilbert modules over matrix algebras, Linear Algebra Appl., 341 (2002), 57–67. · Zbl 0998.15027 · doi:10.1016/S0024-3795(01)00267-1
[7] R. Harte, The triangle inequality in C*-algebras, Filomat, 20 (2006), 51–53. · Zbl 1119.46040 · doi:10.2298/FIL0602053H
[8] C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Series 210, Cambridge University Press (Cambridge, 1995).
[9] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, Mathematical Surveys and Monographs 60, AMS (1998). · Zbl 0922.46050
[10] R. C. Thompson, Convex and concave functions of singular values of matrix sums, Pacific J. Math., 66 (1976), 285–290. · Zbl 0361.15014
[11] R. C. Thompson, The case of equality in the matrix-valued triangle inequality, Pacific J. Math., 82 (1979), 279–280. · Zbl 0412.15013
[12] N. E. Wegge-Olsen, K-theory and C*-Algebras – a Friendly Approach, Oxford University Press (Oxford, 1993).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.