×

Modelling the effect of heterogeneous vaccination on metapopulation epidemic dynamics. (English) Zbl 1490.92039

Summary: Vaccination as an epidemic control strategy has a significant effect on epidemic spreading. In this paper, we propose a novel epidemic spreading model on metapopulation networks to study the impact of heterogeneous vaccination on epidemic dynamics, where nodes represent geographical areas and links connecting nodes correspond to human mobility between areas. Using a mean-field approach, we derive the theoretical spreading threshold revealing a non-trivial dependence on the heterogeneity of vaccination. Extensive Monte Carlo simulations validate the theoretical threshold and also show the complex temporal epidemic behaviours above the threshold.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology
Full Text: DOI

References:

[1] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63, Article 066117 pp. (2001)
[2] Miller, J. C.; Slim, A. C.; Volz, E. M., Edge-based compartmental modelling for infectious disease spread, J. R. Soc. Interface, 9, 890-906 (2012)
[3] Lindquist, J.; Ma, J.; van den Driessche, P.; Willeboordse, F. H., Effective degree network disease models, J. Math. Biol., 62, 143-164 (2011) · Zbl 1232.92066
[4] Gong, Y. W.; Song, Y. R.; Jiang, G. P., Epidemic spreading in scale-free networks including the effect of individual vigilance, Chin. Phys. B, 21, Article 010205 pp. (2012)
[5] Wang, J.; Liu, Z.; Xu, J., Epidemic spreading on uncorrelated heterogeneous networks with non-uniform transmission, Physica A, 382, 715-721 (2007)
[6] Zhou, T.; Fu, Z.; Wang, B., Epidemic dynamics on complex networks, Prog. Nat. Sci., 16, 5, 452-457 (2006) · Zbl 1121.92063
[7] Wang, Y.; Xiao, G.; Hu, J.; Cheng, T. H.; Wang, L., Imperfect targeted immunization in scale-free networks, Physica A, 388, 2535-2546 (2009)
[8] Castellano, C.; Pastor-Satorras, R., Thresholds for epidemic spreading in networks, Phys. Rev. Lett., 105, Article 218701 pp. (2010)
[9] Kang, H.; Liu, K.; Fu, X., Dynamics of an epidemic model with quarantine on scale-free networks, Phys. Lett. A, 381, 3945-3951 (2017) · Zbl 1379.92061
[10] Cozzo, E.; Baños, R. A.; Meloni, S.; Moreno, Y., Contact-based social contagion in multiplex networks, Phys. Rev. E, 88, Article 050801 pp. (2013)
[11] Bianconi, G., Epidemic spreading and bond percolation on multilayer networks, J. Stat. Mech. Theory Exp., 2017, 3, Article 034001 pp. (2017) · Zbl 1456.92132
[12] De Domenico, M.; Granell, C.; Porter, M. A.; Arenas, A., The physics of spreading processes in multilayer networks, Nat. Phys., 12, 901-906 (2016)
[13] Granell, C.; Gómez, S.; Arenas, A., Dynamical interplay between awareness and epidemic spreading in multiplex networks, Phys. Rev. Lett., 111, Article 128701 pp. (2013)
[14] Granell, C.; Gómez, S.; Arenas, A., Competing spreading processes on multiplex networks: awareness and epidemics, Phys. Rev. E, 90, Article 012808 pp. (2014)
[15] Liu, Q. H.; Xiong, X.; Zhang, Q.; Perra, N., Epidemic spreading on time-varying multiplex networks, Phys. Rev. E, 98, Article 062303 pp. (2018)
[16] Kan, J. Q.; Zhang, H. F., Effects of awareness diffusion and self-initiated awareness behaviour on epidemic spreading-an approach based on multiplex networks, Commun. Nonlinear Sci. Numer. Simul., 44, 193-203 (2017) · Zbl 1466.92189
[17] Colizza, V.; Pastor-Satorras, R.; Vespignani, A., Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3, 276-282 (2007)
[18] Colizza, V.; Vespignani, A., Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations, J. Theor. Biol., 251, 450-467 (2008) · Zbl 1398.92233
[19] Saldaña, J., Continuous-time formulation of reaction-diffusion processes on heterogeneous metapopulations, Phys. Rev. E, 78, Article 012902 pp. (2008)
[20] Murray, J. D., Mathematical Biology (2005), Springer Verlag: Springer Verlag Berlin
[21] Gong, Y. W.; Song, Y. R.; Jiang, G. P., Time-varying human mobility patterns with metapopulation epidemic dynamics, Physica A, 392, 4242-4251 (2013) · Zbl 1395.92148
[22] Silva, D. H.; Ferreira, S. C., Activation thresholds in epidemic spreading with motile infectious agents on scale-free networks, Chaos, 28, Article 123112 pp. (2018) · Zbl 1404.92203
[23] Soriano-Paños, D.; Lotero, L.; Arenas, A.; Gómez-Gardeñes, J., Spreading processes in multiplex metapopulations containing different mobility networks, Phys. Rev. X, 8, Article 031039 pp. (2018)
[24] Mata, A. S.; Ferreira, S. C.; Pastor-Satorras, R., Effects of local population structure in a reaction-diffusion model of a contact process on metapopulation networks, Phys. Rev. E, 88, Article 042820 pp. (2013)
[25] Ruan, Z.; Tang, M.; Gu, C.; Xu, J., Epidemic spreading between two coupled subpopulations with inner structures, Chaos, 27, Article 103104 pp. (2017)
[26] Apolloni, A.; Poletto, C.; Ramasco, J. J.; Jensen, P.; Colizza, V., Metapopulation epidemic models with heterogeneous mixing and travel behaviour, Theor. Biol. Med. Model., 11, 3 (2014)
[27] Gong, Y. W.; Song, Y. R.; Jiang, G. P., Epidemic spreading in metapopulation networks with heterogeneous infection rates, Physica A, 416, 208-218 (2014) · Zbl 1395.92149
[28] Gong, Y. W.; Small, M., Epidemic spreading on metapopulation networks including migration and demographics, Chaos, 28, Article 083102 pp. (2018) · Zbl 1396.92083
[29] Lachiany, M.; Stone, L., A vaccination model for a multi-city system, Bull. Math. Biol., 74, 10, 2474-2487 (2012) · Zbl 1312.92040
[30] Wang, Z.; Zhao, D.; Wang, L.; Sun, G.; Jin, Z., Immunity of multiplex networks via acquaintance vaccination, Europhys. Lett., 112, 4, Article 48002 pp. (2015)
[31] Rodrigues, H. S.; Monteiro, M. T.T.; Torres, D. F.M., Vaccination models and optimal control strategies to dengue, Math. Biosci., 247, 1-12 (2014) · Zbl 1282.92022
[32] Kuga, K.; Tanimoto, J., Impact of imperfect vaccination and defense against contagion on vaccination behavior in complex networks, J. Stat. Mech. Theory Exp., 2018, 11, Article 113402 pp. (2018) · Zbl 1456.92082
[33] Zhang, H. F.; Shu, P. P.; Wang, Z.; Tang, M.; Small, M., Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases, Appl. Math. Comput., 294, 332-342 (2017) · Zbl 1411.92299
[34] Tanaka, G.; Urabe, C.; Aihara, K., Random and targeted interventions for epidemic control in metapopulation models, Sci. Rep., 4, 5522 (2014)
[35] Lachiany, M., Modeling vaccination in a heterogeneous metapopulation system, Physica A, 458, 43-51 (2016) · Zbl 1400.92142
[36] Hofmann, F.; Ferracin, C.; Marsh, G.; Dumas, R., Influenza vaccination of healthcare workers: a literature review of attitudes and beliefs, Infection, 34, 3, 142-147 (2006)
[37] Downs, J. S.; de Bruin, W. B.; Fischhoff, B., Parents’ vaccination comprehension and decisions, Vaccine, 26, 12, 1595-1607 (2008)
[38] Shen, C.; Chen, H.; Hou, Z., An efficient strategy to suppress epidemic explosion in heterogeneous metapopulation networks, Phys. Rev. E, 86, 3, Article 036114 pp. (2012)
[39] Lund, H.; Lizana, L.; Simonsen, I., Effects of city-size heterogeneity on epidemic spreading in a metapopulation: a reaction-diffusion approach, J. Stat. Phys., 151, 367-382 (2013) · Zbl 1329.92137
[40] Poletto, C.; Tizzoni, M.; Colizza, V., Heterogeneous length of stay of hosts’ movements and spatial epidemic spread, Sci. Rep., 2, 476 (2012)
[41] Wang, J.; Mo, H.; Wang, F.; Jin, F., Exploring the network structure and nodal centrality of China’s air transport network: a complex network approach, J. Transp. Geogr., 19, 4, 712-721 (2011)
[42] Pastor-Satorras, R.; Vazquez, A.; Vespignani, A., Dynamical and correlation properties of the Internet, Phys. Rev. Lett., 87, Article 258701 pp. (2001)
[43] Anderson, J., A secular equation for the eigenvalues of a diagonal matrix perturbation, Linear Algebra Appl., 246, 49-70 (1996) · Zbl 0861.15006
[44] Batagelj, V.; Mrvar, A., Pajek datasets (2006)
[45] Catanzaro, M.; Boguñá, M.; Pastor-Satorras, R., Generation of uncorrelated random scale-free networks, Phys. Rev. E, 71, Article 027103 pp. (2005)
[46] Masuda, N., Effects of diffusion rates on epidemic spreads in metapopulation networks, New J. Phys., 12, Article 093009 pp. (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.