×

Dynamics of the spread of tuberculosis in heterogeneous complex metapopulations. (English) Zbl 1275.34066

Summary: This paper analyzes the dynamics of the spread of tuberculosis (TB) on complex metapopulation, that is, networks of populations connected by migratory flows whose configurations are described in terms of connectivity distribution of nodes (patches) and the conditional probabilities of connections among classes of nodes sharing the same degree. The migration and transmission processes occur simultaneously. For uncorrelated networks, we give a necessary and sufficient condition for the instability of the disease-free equilibrium. The existence of endemic equilibria is also discussed. Finally, the prevalence of the TB infection across the metapopulation as a function of the path connectivity is studied using numerical simulations.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D20 Stability of solutions to ordinary differential equations
34F05 Ordinary differential equations and systems with randomness
92C60 Medical epidemiology
92C42 Systems biology, networks

References:

[1] DOI: 10.1016/0024-3795(94)00314-9 · Zbl 0861.15006 · doi:10.1016/0024-3795(94)00314-9
[2] DOI: 10.1016/j.mbs.2008.08.010 · Zbl 1153.92026 · doi:10.1016/j.mbs.2008.08.010
[3] DOI: 10.1007/s11538-008-9295-4 · Zbl 1142.92016 · doi:10.1007/s11538-008-9295-4
[4] DOI: 10.1007/s001090050260 · doi:10.1007/s001090050260
[5] DOI: 10.1103/PhysRevE.66.047104 · doi:10.1103/PhysRevE.66.047104
[6] DOI: 10.1016/j.cnsns.2009.02.017 · Zbl 1221.34128 · doi:10.1016/j.cnsns.2009.02.017
[7] DOI: 10.1016/j.physleta.2010.09.008 · Zbl 1238.92037 · doi:10.1016/j.physleta.2010.09.008
[8] DOI: 10.1371/journal.pmed.0040013 · doi:10.1371/journal.pmed.0040013
[9] DOI: 10.1038/nphys560 · doi:10.1038/nphys560
[10] DOI: 10.1103/PhysRevLett.99.148701 · doi:10.1103/PhysRevLett.99.148701
[11] DOI: 10.1016/j.jtbi.2007.11.028 · Zbl 1398.92233 · doi:10.1016/j.jtbi.2007.11.028
[12] Dye C., Int. J. Tuberc. Lung Dis. 45 pp 146– (2000)
[13] DOI: 10.1006/tpbi.2000.1451 · Zbl 0972.92016 · doi:10.1006/tpbi.2000.1451
[14] DOI: 10.1137/S0036144500371907 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[15] DOI: 10.1137/1035003 · Zbl 0776.92001 · doi:10.1137/1035003
[16] Jindani A., Am. Rev. Respir. Dis. 121 pp 939– (1980)
[17] DOI: 10.1103/PhysRevE.80.041920 · doi:10.1103/PhysRevE.80.041920
[18] DOI: 10.1016/j.crma.2005.07.015 · Zbl 1089.34523 · doi:10.1016/j.crma.2005.07.015
[19] DOI: 10.1098/rsif.2005.0051 · doi:10.1098/rsif.2005.0051
[20] DOI: 10.1103/PhysRevLett.86.2909 · doi:10.1103/PhysRevLett.86.2909
[21] DOI: 10.1016/0025-5564(76)90125-5 · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[22] DOI: 10.1006/jtbi.1996.0042 · doi:10.1006/jtbi.1996.0042
[23] DOI: 10.1016/j.mbs.2003.09.003 · Zbl 1036.92029 · doi:10.1016/j.mbs.2003.09.003
[24] DOI: 10.1016/S0025-5564(02)00133-5 · Zbl 1015.92024 · doi:10.1016/S0025-5564(02)00133-5
[25] DOI: 10.1016/S0022-5193(03)00038-9 · doi:10.1016/S0022-5193(03)00038-9
[26] DOI: 10.1103/PhysRevE.64.025102 · doi:10.1103/PhysRevE.64.025102
[27] DOI: 10.1103/PhysRevE.64.026118 · doi:10.1103/PhysRevE.64.026118
[28] DOI: 10.1103/PhysRevE.70.056131 · doi:10.1103/PhysRevE.70.056131
[29] DOI: 10.1103/PhysRevLett.86.3200 · doi:10.1103/PhysRevLett.86.3200
[30] DOI: 10.1103/PhysRevE.78.012902 · doi:10.1103/PhysRevE.78.012902
[31] DOI: 10.1051/mmnp/20105602 · Zbl 1204.92062 · doi:10.1051/mmnp/20105602
[32] DOI: 10.1016/S0025-5564(02)00108-6 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.