×

On the implementation of WENO schemes for a class of polydisperse sedimentation models. (English) Zbl 1391.76465

Summary: The sedimentation of a polydisperse suspension of small rigid spheres of the same density, but which belong to a finite number of species (size classes), can be described by a spatially one-dimensional system of first-order, nonlinear, strongly coupled conservation laws. The unknowns are the volume fractions (concentrations) of each species as functions of depth and time. Typical solutions, e.g. for batch settling in a column, include discontinuities (kinematic shocks) separating areas of different composition. The accurate numerical approximation of these solutions is a challenge since closed-form eigenvalues and eigenvectors of the flux Jacobian are usually not available, and the characteristic fields are neither genuinely nonlinear nor linearly degenerate. However, the flux vectors associated with the widely used models by Masliyah, Lockett and Bassoon (MLB model) and Höfler and Schwarzer (HS model) give rise to Jacobians that are low-rank perturbations of a diagonal matrix. This property allows to apply a convenient hyperbolicity criterion that has become known as the “secular equation” [J. Anderson, Linear Algebra Appl. 246, 49–70 (1996; Zbl 0861.15006)]. This criterion was recently applied [R. Bürger et al., SIAM J. Appl. Math. 70, No. 7, 2186–2213 (2010; Zbl 1223.35226)] to prove that the MLB and HS models are strictly hyperbolic under easily verifiable conditions, that their eigenvalues interlace with the velocities of the species that form the flux vector (so the velocities are good starting values for a root finder), and that the corresponding eigenvectors can be calculated with acceptable effort. In the present work, the newly available characteristic information is exploited for the implementation of characteristic-wise (spectral) weighted essentially non-oscillatory (WENO) schemes for the MLB and HS models. Numerical examples illustrate that WENO schemes which use this spectral information are superior in resolution, and even in efficiency for the same overall resolution, to component-wise WENO schemes.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76T20 Suspensions
35L65 Hyperbolic conservation laws
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Anderson, J., A secular equation for the eigenvalues of a diagonal matrix perturbation, Lin. Alg. Appl., 246, 49-70 (1996) · Zbl 0861.15006
[2] Basson, D. K.; Berres, S.; Bürger, R., On models of polydisperse sedimentation with particle-size-specific hindered-settling factors, Appl. Math. Model., 33, 1815-1835 (2009) · Zbl 1205.76265
[3] Batchelor, G. K.; General theory, Sedimentation in a. dilute polydisperse system of interacting spheres. Part 1., J. Fluid Mech., 119, 379-408 (1982) · Zbl 0498.76088
[4] Batchelor, G. K.; Wen, C. S., Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results, J. Fluid Mech., 124, 495-528 (1982) · Zbl 0507.76101
[5] Benzoni-Gavage, S.; Colombo, R. M., An n-populations model for traffic flow, Eur. J. Appl. Math., 14, 587-612 (2003) · Zbl 1143.82323
[6] Berres, S.; Bürger, R., On Riemann problems and front tracking for a model of sedimentation of polydisperse suspensions, ZAMM Z. Angew. Math. Mech., 87, 665-691 (2007) · Zbl 1138.35371
[7] Berres, S.; Bürger, R.; Karlsen, K. H.; Tory, E. M., Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64, 41-80 (2003) · Zbl 1047.35071
[8] Bürger, R.; Concha, F.; Fjelde, K.-K.; Karlsen, K. H., Numerical simulation of the settling of polydisperse suspensions of spheres, Powder Technol., 113, 30-54 (2000)
[9] Bürger, R.; Donat, R.; Mulet, P.; Vega, C. A., Hyperbolicity analysis of polydisperse sedimentation models via a secular equation for the flux Jacobian, SIAM J. Appl. Math., 70, 2186-2213 (2010) · Zbl 1223.35226
[10] Bürger, R.; Fjelde, K.-K.; Höfler, K.; Karlsen, K. H., Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations, J. Eng. Math., 41, 167-187 (2001) · Zbl 1014.76060
[11] Bürger, R.; Garcı´a, A.; Karlsen, K. H.; Towers, J. D., A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60, 387-425 (2008) · Zbl 1200.76126
[12] Bürger, R.; Garcı´a, A.; Kunik, M., A generalized kinetic model of sedimentation of polydisperse suspensions with a continuous particle size distribution, Math. Models Methods Appl. Sci., 18, 1741-1785 (2008) · Zbl 1156.82394
[13] Bürger, R.; Karlsen, K. H.; Tory, E. M.; Wendland, W. L., Model equations and instability regions for the sedimentation of polydisperse suspensions of spheres, ZAMM Z. Angew. Math. Mech., 82, 699-722 (2002) · Zbl 1011.35017
[14] Bürger, R.; Kozakevicius, A., Adaptive multiresolution WENO schemes for multi-species kinematic flow models, J. Comput. Phys., 224, 1190-1222 (2007) · Zbl 1123.65305
[15] Davis, R. H.; Gecol, H., Hindered settling function with no empirical parameters for polydisperse suspensions, AIChE J., 40, 570-575 (1994)
[16] Diehl, S., Estimation of the batch-settling flux function for an ideal suspension from only two experiments, Chem. Eng. Sci., 62, 4589-4601 (2007)
[17] Donat, R.; Mulet, P., Characteristic-based schemes for multi-class Lighthill-Whitham-Richards traffic models, J. Sci. Comput., 37, 233-250 (2008) · Zbl 1203.65169
[18] Donat, R.; Mulet, P., A secular equation for the Jacobian matrix of certain multi-species kinematic flow models, Numer. Methods Partial Differ. Equat., 26, 159-175 (2010) · Zbl 1423.35249
[19] Frising, T.; Noı¨k, C.; Dalmazzone, C., The liquid/liquid sedimentation process: from droplet coalescence to technologically enhanced water/oil emulsion gravity separators: a review, J. Disp. Sci. Technol., 27, 1035-1057 (2006)
[20] Gottlieb, S.; Ketcheson, D. I.; Shu, C.-W., High order strong stability preserving time discretization, J. Sci. Comput., 38, 251-289 (2009) · Zbl 1203.65135
[21] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85 (1998) · Zbl 0897.65058
[22] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098
[23] Greenspan, H. P.; Ungarish, M., On hindered settling of particles of different sizes, Int. J. Multiphase Flow, 8, 587-604 (1982) · Zbl 0511.76104
[24] Hartland, S.; Jeelani, S. A.K., Choice of model for predicting the dispersion height in liquid/liquid gravity settlers from batch settling data, Chem. Eng. Sci., 42, 1927-1938 (1987)
[25] Hartland, S.; Jeelani, S. A.K., Prediction of sedimentation and coalescence profiles in a decaying batch dispersion, Chem. Eng. Sci., 43, 2421-2429 (1988)
[26] Jeelani, S. A.K.; Hartland, S., Dynamic response of gravity settlers to changes in dispersion throughput, AIChE J., 34, 335-340 (1988)
[27] Jeelani, S. A.K.; Hartland, S., The continuous separation of liquid/liquid dispersions, Chem. Eng. Sci., 48, 239-254 (1993)
[28] Jeelani, S. A.K.; Pandit, A.; Hartland, S., Factors affecting the decay of batch liquid-liquid dispersions, Canad. J. Chem. Eng., 68, 924-931 (1990)
[29] K. Höfler, Simulation and Modeling of Mono- and Bidisperse Suspensions. Doctoral Thesis, Institut für Computeranwendungen, Universität Stuttgart, Germany, 2000.; K. Höfler, Simulation and Modeling of Mono- and Bidisperse Suspensions. Doctoral Thesis, Institut für Computeranwendungen, Universität Stuttgart, Germany, 2000.
[30] Höfler, K.; Schwarzer, S., The structure of bidisperse suspensions al low Reynolds numbers, (Sändig, A. M.; Schiehlen, W.; Wendland, W. L., Multifield Problems: State of the Art (2000), Springer-Verlag: Springer-Verlag Berlin), 42-49 · Zbl 1029.76055
[31] Jiang, G. S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[32] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. Comput. Phys., 207, 542-567 (2005) · Zbl 1072.65114
[33] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[34] Lockett, M. J.; Bassoon, K. S., Sedimentation of binary particle mixtures, Powder Technol., 24, 1-7 (1979)
[35] Masliyah, J. H., Hindered settling in a multiple-species particle system, Chem. Eng. Sci., 34, 1166-1168 (1979)
[36] Nadiv, C.; Semiat, R., Batch settling liq.-liq. dispersion. Ind. Eng. Chem. Res., 34, 2427-2435 (1995)
[37] Patwardhan, V. S.; Tien, C., Sedimentation and liquid fluidization of solid particles of different sizes and densities, Chem. Eng. Sci., 40, 1051-1060 (1985)
[38] Rosso, F.; Sona, G., Gravity-driven separation of oil-water dispersions, Adv. Math. Sci. Appl., 11, 127-151 (2001) · Zbl 0984.76094
[39] Ruuth, S., Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput., 75, 183-207 (2006) · Zbl 1080.65088
[40] Ruuth, S.; Spiteri, R., Two barriers on strong-stability-preserving time discretization methods, J. Sci. Comput., 17, 211-220 (2002) · Zbl 1003.65107
[41] Schneider, W.; Anestis, G.; Schaflinger, U., Sediment composition due to settling of particles of different sizes, Int. J. Multiphase Flow, 11, 419-423 (1985)
[42] Shannon, P. T.; Stroupe, E.; Batch, E. M. Tory.; thickening, continuous, Ind. Eng. Chem. Fund., 2, 203-211 (1963)
[43] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[44] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Cockburn, B.; Johnson, C.; Shu, C.-W.; Quarteroni, E. A., Lecture Notes in Mathematics, vol. 1697 (1998), Springer-Verlag: Springer-Verlag Berlin), 325-432 · Zbl 0927.65111
[45] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[46] Wong, G. C.K.; Wong, S. C., A multi-class traffic flow model – an extension of LWR model with heterogeneous drivers, Transp. Res. A, 36, 827-841 (2002)
[47] Zhang, M.; Shu, C.-W.; Wong, G. C.K.; Wong, S. C., A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, J. Comput. Phys., 191, 639-659 (2003) · Zbl 1041.90008
[48] Zhang, P.; Liu, R. X.; Wong, S. C.; Dai, S. Q., Hyperbolicity and kinematic waves of a class of multi-population partial differential equations, Eur. J. Appl. Math., 17, 171-200 (2006) · Zbl 1107.35389
[49] Zhang, P.; Wong, S. C.; Dai, S.-Q., A note on the weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, Commun. Numer. Methods Eng., 25, 1120-1126 (2009) · Zbl 1175.90103
[50] Zhang, P.; Wong, S. C.; Shu, C.-W., A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway, J. Comput. Phys., 212, 739-756 (2006) · Zbl 1149.65319
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.