×

The legacy of Jean Bourgain in geometric functional analysis. (English) Zbl 1471.46010

This paper is one of the contributions to the volume of the “Bulletin” devoted to the memory of Jean Bourgain (1954–2018). The paper is dedicated to the work in geometric functional analysis with no intention to provide a comprehensive overview of Bourgain’s work in geometric functional analysis because of the enormous breadth and depth of his contributions.
The paper discusses aspects of the following three directions: metric geometry, the geometry of high-dimensional convex bodies, and the study of random operators.
The author provides the necessary background for understanding the following of Bourgain’s contributions to the geometry of high-dimensional convex bodies: the reverse Santaló inequality [J. Bourgain and V. D. Milman, Invent. Math. 88, 319–340 (1987; Zbl 0617.52006)] and Bourgain’s estimate [J. Bourgain, Lect. Notes Math. 1469, 127–137 (1991; Zbl 0773.46013)] related to his slicing conjecture. Subsequent developments are also discussed.
In metric geometry, the author describes Bourgain’s contributions to what Bourgain named the “Ribe program”. The goals of this program can be described in the following way: (1) To find explicit metric characterizations of the isomorphic invariants of Banach spaces determined by finite-dimensional structures; (2) to build a theory of finite metric spaces using an analogy with Banach spaces and results of the first part of the program.
Bourgain achieved the first successes in the Ribe program and thus initiated this very active and fertile direction of research. Bourgain’s main contributions were: (1) sharp estimates for the distortion of embeddings of an arbitrary \(n\)-element metric space into a Euclidean space [J. Bourgain, Isr. J. Math. 52, 46–52 (1985; Zbl 0657.46013)]; (2) metric characterization of superreflexivity [J. Bourgain, Isr. J. Math. 56, 222–230 (1986; Zbl 0643.46013)]; (3) metric characterization of type [J. Bourgain et al., Trans. Am. Math. Soc. 294, 295–317 (1986; Zbl 0617.46024)]; (4) nonlinear Dvoretzky theorem [J. Bourgain et al., Isr. J. Math. 55, 147–152 (1986; Zbl 0634.46008)].
The paper contains descriptions of these contributions and a sketch of the proof of the result (1), and presents some of the important further developments.
As for the study of random operators, the author sketches the proof of the result of [J. Bourgain and L. Tzafriri, Isr. J. Math. 57, 137–224 (1987; Zbl 0631.46017)] on restricted invertibility. This result was used by Marcus, Spielman, and Srivastava in their solution of the Kadison-Singer problem [A. W. Marcus et al., Ann. Math. (2) 182, No. 1, 327–350 (2015; Zbl 1332.46056)].
The paper is a very useful source for becoming acquainted with the mentioned directions of Bourgain’s research.
Reviewer’s remarks: I find it natural to mention (1) the recent breakthrough on the slicing conjecture: [Y.-S. Chen, “An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture”, Preprint (2020), arXiv:2011.13661]; (2) the recent breakthrough in the Ribe program: [P. Ivanisvili et al., Ann. Math. (2) 192, No. 2, 665–678 (2020; Zbl 1458.46012)]; (3) the important recent survey [A. Naor, in: Proceedings of the international congress of mathematicians, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemťica (SBM). 759–837 (2018; Zbl 1444.46019)].

MSC:

46B07 Local theory of Banach spaces
46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
51F30 Lipschitz and coarse geometry of metric spaces
52A23 Asymptotic theory of convex bodies
46-03 History of functional analysis
01A70 Biographies, obituaries, personalia, bibliographies

Biographic References:

Bourgain, Jean
Full Text: DOI

References:

[1] Anderson, Joel, Extensions, restrictions, and representations of states on \(C^{\ast} \)-algebras, Trans. Amer. Math. Soc., 249, 2, 303-329 (1979) · Zbl 0408.46049 · doi:10.2307/1998793
[2] Anttila, Milla; Ball, Keith; Perissinaki, Irini, The central limit problem for convex bodies, Trans. Amer. Math. Soc., 355, 12, 4723-4735 (2003) · Zbl 1033.52003 · doi:10.1090/S0002-9947-03-03085-X
[3] Aumann, Yonatan; Rabani, Yuval, An \(O(\log k)\) approximate min-cut max-flow theorem and approximation algorithm, SIAM J. Comput., 27, 1, 291-301 (1998) · Zbl 0910.05038 · doi:10.1137/S0097539794285983
[4] Ball, K., Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal., 2, 2, 137-172 (1992) · Zbl 0788.46050 · doi:10.1007/BF01896971
[5] Ball, Keith, An elementary introduction to modern convex geometry. Flavors of geometry, Math. Sci. Res. Inst. Publ. 31, 1-58 (1997), Cambridge Univ. Press, Cambridge · Zbl 0832.11018 · doi:10.2977/prims/1195164788
[6] Ball, Keith, The Ribe programme, Ast\'{e}risque, 352, Exp. No. 1047, viii, 147-159 (2013) · Zbl 1303.46019
[7] Ball, Keith; Nguyen, Van Hoang, Entropy jumps for isotropic log-concave random vectors and spectral gap, Studia Math., 213, 1, 81-96 (2012) · Zbl 1264.94077 · doi:10.4064/sm213-1-6
[8] Bartal, Yair; Linial, Nathan; Mendel, Manor; Naor, Assaf, On metric Ramsey-type phenomena, Ann. of Math. (2), 162, 2, 643-709 (2005) · Zbl 1114.46007 · doi:10.4007/annals.2005.162.643
[9] Batson, Joshua; Spielman, Daniel A.; Srivastava, Nikhil, Twice-Ramanujan sparsifiers, SIAM J. Comput., 41, 6, 1704-1721 (2012) · Zbl 1260.05092 · doi:10.1137/090772873
[10] W. Blaschke, \"Uber affine Geometrie VII: Neue Extremeingenschaften von Ellipse und Ellipsoid, Ber. Verh. S\"achs. Akad. Wiss. Math. Phys. Kl. 69, (1917), 412-420.
[11] Bourgain, J., The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math., 56, 2, 222-230 (1986) · Zbl 0643.46013 · doi:10.1007/BF02766125
[12] Bourgain, J., On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math., 52, 1-2, 46-52 (1985) · Zbl 0657.46013 · doi:10.1007/BF02776078
[13] Bourgain, J., On the distribution of polynomials on high-dimensional convex sets. Geometric aspects of functional analysis (1989-90), Lecture Notes in Math. 1469, 127-137 (1991), Springer, Berlin · Zbl 0773.46013 · doi:10.1007/BFb0089219
[14] Bourgain, J.; Figiel, T.; Milman, V., On Hilbertian subsets of finite metric spaces, Israel J. Math., 55, 2, 147-152 (1986) · Zbl 0634.46008 · doi:10.1007/BF02801990
[15] Bourgain, J.; Milman, V. D., New volume ratio properties for convex symmetric bodies in \({\mathbf{R}}^n\), Invent. Math., 88, 2, 319-340 (1987) · Zbl 0617.52006 · doi:10.1007/BF01388911
[16] Bourgain, J.; Milman, V.; Wolfson, H., On type of metric spaces, Trans. Amer. Math. Soc., 294, 1, 295-317 (1986) · Zbl 0617.46024 · doi:10.2307/2000132
[17] Bourgain, J.; Tzafriri, L., Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math., 57, 2, 137-224 (1987) · Zbl 0631.46017 · doi:10.1007/BF02772174
[18] Brehm, Ulrich; Voigt, J\"{u}rgen, Asymptotics of cross sections for convex bodies, Beitr\"{a}ge Algebra Geom., 41, 2, 437-454 (2000) · Zbl 0983.52004
[19] Casazza, Peter G.; Tremain, Janet C., Revisiting the Bourgain-Tzafriri restricted invertibility theorem, Oper. Matrices, 3, 1, 97-110 (2009) · Zbl 1180.46009 · doi:10.7153/oam-03-04
[20] Dvoretzky, Aryeh, A theorem on convex bodies and applications to Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 45, 223-226; erratum, 1554 (1959) · Zbl 0088.31802 · doi:10.1073/pnas.45.10.1554
[21] Eldan, Ronen, Thin shell implies spectral gap up to polylog via a stochastic localization scheme, Geom. Funct. Anal., 23, 2, 532-569 (2013) · Zbl 1277.52013 · doi:10.1007/s00039-013-0214-y
[22] Enflo, Per, On the nonexistence of uniform homeomorphisms between \(L_p \)-spaces, Ark. Mat., 8, 103-105 (1969) · Zbl 0196.14002 · doi:10.1007/BF02589549
[23] Enflo, Per, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math., 13, 281-288 (1973) (1972) · Zbl 0259.46012 · doi:10.1007/BF02762802
[24] Feige, Uriel, Approximating the bandwidth via volume respecting embeddings, J. Comput. System Sci., 60, 3, 510-539 (2000) · Zbl 0958.68191 · doi:10.1006/jcss.1999.1682
[25] Fleury, B.; Gu\'{e}don, O.; Paouris, G., A stability result for mean width of \(L_p\)-centroid bodies, Adv. Math., 214, 2, 865-877 (2007) · Zbl 1132.52012 · doi:10.1016/j.aim.2007.03.008
[26] Giannopoulos, Apostolos; Paouris, Grigoris; Vritsiou, Beatrice-Helen, The isotropic position and the reverse Santal\'{o} inequality, Israel J. Math., 203, 1, 1-22 (2014) · Zbl 1307.52003 · doi:10.1007/s11856-012-0173-2
[27] M. X. Goemans and D. P. Williamson, .878-approximation algorithms for MAX CUT and MAX 2SAT, Proc. of the 26th Annual ACM Symposium on Theory of Computing, ACM, New York, (1994), 422-431. · Zbl 1345.68274
[28] Grothendieck, A., R\'{e}sum\'{e} de la th\'{e}orie m\'{e}trique des produits tensoriels topologiques, Bol. Soc. Mat. S\~{a}o Paulo, 8, 1-79 (1953) · Zbl 0074.32303
[29] Hensley, Douglas, Slicing convex bodies-bounds for slice area in terms of the body’s covariance, Proc. Amer. Math. Soc., 79, 4, 619-625 (1980) · Zbl 0439.52008 · doi:10.2307/2042510
[30] James, Robert C., Super-reflexive Banach spaces, Canadian J. Math., 24, 896-904 (1972) · Zbl 0222.46009 · doi:10.4153/CJM-1972-089-7
[31] John, Fritz, Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187-204 (1948), Interscience Publishers, Inc., New York, N. Y. · Zbl 0034.10503
[32] Johnson, William B.; Lindenstrauss, Joram, Extensions of Lipschitz mappings into a Hilbert space. Conference in modern analysis and probability, New Haven, Conn., 1982, Contemp. Math. 26, 189-206 (1984), Amer. Math. Soc., Providence, RI · Zbl 0539.46017 · doi:10.1090/conm/026/737400
[33] Kadison, Richard V.; Singer, I. M., Extensions of pure states, Amer. J. Math., 81, 383-400 (1959) · Zbl 0086.09704 · doi:10.2307/2372748
[34] Kannan, R.; Lov\'{a}sz, L.; Simonovits, M., Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom., 13, 3-4, 541-559 (1995) · Zbl 0824.52012 · doi:10.1007/BF02574061
[35] Klartag, B., On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., 16, 6, 1274-1290 (2006) · Zbl 1113.52014 · doi:10.1007/s00039-006-0588-1
[36] Klartag, B., A central limit theorem for convex sets, Invent. Math., 168, 1, 91-131 (2007) · Zbl 1144.60021 · doi:10.1007/s00222-006-0028-8
[37] Kwapie\'{n}, S., Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math., 44, 583-595 (1972) · Zbl 0256.46024 · doi:10.4064/sm-44-6-583-595
[38] Kuperberg, Greg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal., 18, 3, 870-892 (2008) · Zbl 1169.52004 · doi:10.1007/s00039-008-0669-4
[39] Linial, Nathan; London, Eran; Rabinovich, Yuri, The geometry of graphs and some of its algorithmic applications, Combinatorica, 15, 2, 215-245 (1995) · Zbl 0827.05021 · doi:10.1007/BF01200757
[40] Lindenstrauss, J.; Pe\l czy\'{n}ski, A., Absolutely summing operators in \(L_p \)-spaces and their applications, Studia Math., 29, 275-326 (1968) · Zbl 0183.40501 · doi:10.4064/sm-29-3-275-326
[41] Lee, Yin Tat; Vempala, Santosh S., The Kannan-Lov\'{a}sz-Simonovits conjecture. Current developments in mathematics 2017, 1-36 (2019), Int. Press, Somerville, MA · Zbl 1474.52005
[42] Marcus, Adam W.; Spielman, Daniel A.; Srivastava, Nikhil, Ramanujan graphs and the solution of the Kadison-Singer problem. Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. III, 363-386 (2014), Kyung Moon Sa, Seoul · Zbl 1373.05108
[43] Maurey, Bernard, Th\'{e}or\`emes de factorisation pour les op\'{e}rateurs lin\'{e}aires \`a valeurs dans les espaces \(L^p \), ii+163 pp. (1974), Soci\'{e}t\'{e} Math\'{e}matique de France, Paris · Zbl 0278.46028
[44] Maurey, Bernard, Type, cotype and \(K\)-convexity. Handbook of the geometry of Banach spaces, Vol. 2, 1299-1332 (2003), North-Holland, Amsterdam · Zbl 1074.46006 · doi:10.1016/S1874-5849(03)80037-2
[45] Mendel, Manor; Naor, Assaf, Metric cotype, Ann. of Math. (2), 168, 1, 247-298 (2008) · Zbl 1187.46014 · doi:10.4007/annals.2008.168.247
[46] Mendel, Manor; Naor, Assaf, Ultrametric skeletons, Proc. Natl. Acad. Sci. USA, 110, 48, 19256-19262 (2013) · Zbl 1307.46013 · doi:10.1073/pnas.1202500109
[47] Milman, V. D., A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkcional. Anal. i Prilo\v{z}en., 5, 4, 28-37 (1971)
[48] Milman, V. D., Random subspaces of proportional dimension of finite-dimensional normed spaces: approach through the isoperimetric inequality. Banach spaces, Columbia, Mo., 1984, Lecture Notes in Math. 1166, 106-115 (1985), Springer, Berlin · Zbl 0588.46013 · doi:10.1007/BFb0074700
[49] Naor, Assaf, An introduction to the Ribe program, Jpn. J. Math., 7, 2, 167-233 (2012) · Zbl 1261.46013 · doi:10.1007/s11537-012-1222-7
[50] Naor, Assaf; Peres, Yuval; Schramm, Oded; Sheffield, Scott, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J., 134, 1, 165-197 (2006) · Zbl 1108.46012 · doi:10.1215/S0012-7094-06-13415-4
[51] Nazarov, Fedor, The H\"{o}rmander proof of the Bourgain-Milman theorem. Geometric aspects of functional analysis, Lecture Notes in Math. 2050, 335-343 (2012), Springer, Heidelberg · Zbl 1291.52014 · doi:10.1007/978-3-642-29849-3\_20
[52] Paouris, G., Concentration of mass on convex bodies, Geom. Funct. Anal., 16, 5, 1021-1049 (2006) · Zbl 1114.52004 · doi:10.1007/s00039-006-0584-5
[53] Pisier, Gilles, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics 94, xvi+250 pp. (1989), Cambridge University Press, Cambridge · Zbl 0698.46008 · doi:10.1017/CBO9780511662454
[54] Pisier, Gilles, Sur les espaces de Banach qui ne contiennent pas uniform\'{e}ment de \(l^1_n \), C. R. Acad. Sci. Paris S\'{e}r. A-B, 277, A991-A994 (1973) · Zbl 0271.46011
[55] Pisier, Gilles, Martingales with values in uniformly convex spaces, Israel J. Math., 20, 3-4, 326-350 (1975) · Zbl 0344.46030 · doi:10.1007/BF02760337
[56] Pisier, Gilles, Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc. (N.S.), 49, 2, 237-323 (2012) · Zbl 1244.46006 · doi:10.1090/S0273-0979-2011-01348-9
[57] Ribe, M., On uniformly homeomorphic normed spaces, Ark. Mat., 14, 2, 237-244 (1976) · Zbl 0336.46018 · doi:10.1007/BF02385837
[58] Santal\'{o}, L. A., An affine invariant for convex bodies of \(n\)-dimensional space, Portugal. Math., 8, 155-161 (1949) · Zbl 0038.35702
[59] Sauer, N., On the density of families of sets, J. Combinatorial Theory Ser. A, 13, 145-147 (1972) · Zbl 0248.05005 · doi:10.1016/0097-3165(72)90019-2
[60] Shelah, Saharon, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math., 41, 247-261 (1972) · Zbl 0239.02024
[61] Spielman, Daniel A.; Srivastava, Nikhil, An elementary proof of the restricted invertibility theorem, Israel J. Math., 190, 83-91 (2012) · Zbl 1261.46007 · doi:10.1007/s11856-011-0194-2
[62] T. Tao, Exploring the toolkit of Jean Bourgain, Bull. Amer. Math. Soc. 58 (2021), no. 1 (to appear). · Zbl 1466.28001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.