×

Quantum vacuum torque on a bi-anisotropic absorbing magneto-dielectric cylindrical shell co-axis with a perfectly conductor cylindrical shell. (English) Zbl 1471.81090

Summary: A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric cylindrical shell is provided. The mode expansions of the dynamical quantum fields, contained in the theory, is achieved and the ladder operators of the system are introduced. Using the Frobenius’s series technique, the Maxwell’s equations in the presence of the bi-anisotropic absorbing magneto-dielectric cylindrical shell are solved and the space – time dependence of the quantized electromagnetic field is obtained. Applying the conservation principle of the angular momentum, the net quantum vacuum torque exerted on the bi-anisotropic absorbing magneto-dielectric cylindrical shell is calculated. The net quantum vacuum torque exerted on the cylindrical shell is calculated in the vacuum state and the thermal state of the system. The quantum vacuum torque on the cylindrical shell identically vanishes when the bi-anisotropic absorbing magneto-dielectric cylindrical shell is converted to an isotropic one.

MSC:

81T70 Quantization in field theory; cohomological methods
81V10 Electromagnetic interaction; quantum electrodynamics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Godlowski, W., Szydlowski, M. and Zhu, Z.-H., Grav. Cosmol.14, 8 (2008). · Zbl 1148.83025
[2] Volovik, G. E., J. Low Temp. Phys.124, 39 (2001).
[3] Zhai, X.-H., Li, X.-Z. and Feng, C.-J., Mod. Phys. Lett. A26, 669 (2011). · Zbl 1447.81185
[4] Rajabpour, M. A., Phys. Rev. D94, 105029 (2016).
[5] Bezerra de Mello, E. R., Saharian, A. A. and Setare, M. R., Phys. Rev. D95, 065024 (2017).
[6] Klimchitskaya, G. L. and Mostepanenko, V. M., Phys. Rev. D95, 123013 (2017).
[7] Menezes, G., Kiefer, C. and Marino, J., Phys. Rev. D95, 085014 (2017).
[8] Dematos, C. J. and Tajimir, M., Mod. Phys. Lett. A30, 1550159 (2015).
[9] Onofrio, R., Int. J. Mod. Phys. A25, 2260 (2010).
[10] Karim, M., Int. J. Mod. Phys. A31, 1641034 (2016). · Zbl 1337.81110
[11] Elizalde, E., Int. J. Mod. Phys. A25, 2345 (2010). · Zbl 1193.81098
[12] Teo, L. P., J. High Energy Phys.10, 019 (2010). · Zbl 1291.81279
[13] Shakarami, L., Mohammadi, A. and Goushen, S. S., J. High Energy Phys.11, 140 (2011). · Zbl 1306.81293
[14] Decco, R. S., Fishchbach, E., Klimchitskaya, G. L., Krause, D. E., Lopez, D. L. and Mostepanenko, V. M., Phys. Rev. D68, 116003 (2003).
[15] Fosco, C. D., Lombardo, F. C. and Mazzitelli, F. D., Phys. Rev. D93, 125015 (2016).
[16] Milton, K. A., Fulling, S. A., Parashara, P., Romeo, A., Shajesh, K. V. and Wagner, J. A., J. Phys. A41, 164052 (2008). · Zbl 1137.81395
[17] R.-X. Miao and C.-S. Chu, J. High Energy Phys. 046 (2018).
[18] Tian, Z. and Jing, J., J. High Energy Phys.07, 089 (2014).
[19] Arfaei, H. and Noorkuhani, M., J. High Energy Phys.02, 011 (2018).
[20] Marino, J., Recati, A. and Carusotto, I., Phys. Rev. Lett.118, 045301 (2017).
[21] Woods, L. M., Daluit, D. A. R., Tkatchenko, A., Rodriguez-Lopez, P., Rodriguez, A. W. and Podgonik, R., Rev. Mod. Phys.88, 45003 (2010).
[22] Chen, F., Klimchitskaya, G. L., Mostepanenko, V. M. and Mohideen, U., Phys. Rev. B76, 035338 (2007).
[23] Bordag, M., Mohideen, U. and Mostepanenko, V. M., Phys. Rep.353, 1 (2001). · Zbl 0972.81212
[24] Li, H. and Kardar, M., Phys. Rev. A46, 649 (1992).
[25] Maslovski, S. I., Phys. Rev. A84, 022506 (2011).
[26] Sarabadani, J. and Miri, M., Phys. Rev. A84, 032503 (2011).
[27] Emig, T., Hanke, A., Golestanian, R. and Kardar, M., Phys. Rev. A67, 022114 (2003).
[28] Casimir, H. B. G., Proc. Kon. Nederl. Akad. Wet.51, 793 (1948). · Zbl 0031.19005
[29] Milonni, P. W., Quantum Vacuum (Academic Press, 1994).
[30] Lifshitz, E. M., Sov. Phys. JETP2, 73 (1956).
[31] Kupiszewska, D. and Mostowski, J., Phys. Rev. A4, 4636 (1988).
[32] Matloob, R., Keshavarz, A. and Sedighi, D., Phys. Rev. A60, 3410 (1999).
[33] Matloob, R., Phys. Rev. A60, 3421 (1999).
[34] Matloob, R. and Falinejad, H., Phys. Rev. A64, 042102 (2001).
[35] Tomas, M. S., Phys. Rev. A66, 052103 (2002).
[36] Raabe, C., Knöll, L. and Welsch, D. G., Phys. Rev. A68, 033810 (2003).
[37] Raabe, C., Knöll, L. and Welsch, D. G., Phys. Rev. A68, 049902 (2003).
[38] C. Raabe, L. Knöll and D. G. Welsch, arXiv:quant-ph/0309179v1.
[39] Buhmann, S. Y., Knöll, L., Welsch, D. G. and Dung, H. T., Phys. Rev. A70, 052117 (2004).
[40] Matloob, R., Phys. Rev. A70, 062110 (2004).
[41] C. Raabe, L. Knöll and D. G. Welsch, arXiv:quant-ph/0212154v2.
[42] Raabe, C. and Welsch, D. G., Phys. Rev. A71, 013814 (2005).
[43] Tomas, M. S., Phys. Rev. A71, 060101 (2005).
[44] Tomas, M. S., Phys. Rev. A72, 034104 (2005).
[45] Raabe, C., Scheel, S. and Welsch, D. G., Phys. Rev. A73, 063822 (2006).
[46] C. Raabe and D. G. Welsch, arXiv:quant-ph/0602059v1.
[47] Raabe, C. and Welsch, D. G., Hyperfine Interact.172, 142 (2006).
[48] Raabe, C., Scheel, S. and Welsch, D. G., Phys. Rev. A75, 053813 (2007).
[49] Lenac, Z. and Tomas, M. S., Phys. Rev. A75, 042101 (2007).
[50] S. Y. Buhmann and D. G. Welsch, arXiv:quant-ph/0608118v2.
[51] S. Y. Buhmann, L. Knöll, D. G. Welsch and H. T. Dung, arXiv:quant-ph/0403128v3.
[52] Lenac, Z. and Tomas, M. S., Phys. Rev. A78, 023834 (2008).
[53] Buhmann, S. Y. and Welsch, D. G., Phys. Rev. A77, 012110 (2008).
[54] Samabale, A., Buhmann, S. Y., Dung, H. T. and Welsch, D. G., Phys. Rev. A80, 051801 (2009).
[55] Scheel, S. and Buhmann, S. Y., Phys. Rev. A80, 042902 (2009).
[56] Sambale, A., Buhmann, S. Y. and Scheel, S., Phys. Rev. A81, 012509 (2010).
[57] Ellingsen, S. A., Buhmann, S. Y. and Scheel, S., Phys. Rev. A84, 060501 (2011). · Zbl 1249.68066
[58] Amooshahi, M., J. Math. Phys.50, 062301 (2009). · Zbl 1216.81150
[59] Amooshahi, M., Eur. Phys. J. D69, 66 (2015).
[60] Amooshahi, M., Int. J. Theor. Phys.55, 3761 (2016). · Zbl 1361.81164
[61] Amooshahi, M. and Shoughi, A., Mod. Phys. Lett. A33, 1850075 (2018). · Zbl 1390.81652
[62] Amooshahi, M., Eur. Phys. J. D54, 115 (2009).
[63] Amooshahi, M., Int. J. Mod. Phys. A32, 1750209 (2017). · Zbl 1381.81154
[64] Arfken, G., Mathematical Methods for Physicists (Academic Press, 1985). · Zbl 0135.42304
[65] Hassani, S., Foundation of Mathematical Physics (McGraw-Hill, 1991).
[66] Simmons, G. F., Differential Equations (McGraw-Hill, 1972). · Zbl 0231.34001
[67] Jackson, J. D., Classical Electrodynamics (John Wiley, 1998). · Zbl 0114.42903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.