×

Observer-based control of a photovoltaic DC-DC buck converter: HDS approach. (English) Zbl 1432.93114

Summary: In this paper, a new observer-based controller is proposed for a photovoltaic DC-DC buck converter; both photovoltaic (PV) voltage and current regulation are considered. In order to deal with the complex and nonlinear PV mathematical model and adapt it to the control purpose, a hybrid PV current observer model is proposed; three modes are defined and the stability of the observer is discussed using the hybrid dynamical system approach (HDS). The observer-based controller is designed for both voltage and current regulation of the PV system; the closed loop of the full system stability is demonstrated through Lyapunov analysis. Experimental results are also presented showing the feasibility of the proposed observer-based controller.

MSC:

93B53 Observers
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C95 Application models in control theory
Full Text: DOI

References:

[1] E.Ribeiro, A. J. M.Cardoso, C.Boccaletti, Fault‐tolerant strategy for a photovoltaic DC-DC converter, IEEE Trans. Power Electron., 28 (6) (2013), 3008-3018. https://ieeexplore.ieee.org/abstract/document/6340353/.
[2] A. M.Dizqah et al., Standalone DC microgrids as complementarity dynamical systems: Modeling and applications, Control Eng. Practice, 35 (2015), 102-112. https://www.sciencedirect.com/science/article/pii/S096706611400241X.
[3] I. S.Kim, M. B.Kim, M. J.Youn, New maximum power point tracker using sliding‐mode observer for estimation of solar array current in the grid‐connected photovoltaic system, IEEE Trans. Ind. Electron., 53 (4) (2006), 1027-1035. https://ieeexplore.ieee.org/abstract/document/1667900/.
[4] M.Sitbon, S.Schacham, A.Kuperman, Disturbance observer‐based voltage regulation of current‐mode‐boost‐converter‐interfaced photovoltaic generator, IEEE Trans. Ind. Electron., 62 (9) (2015), 5776-5785. https://ieeexplore.ieee.org/abstract/document/7109901.
[5] T.Esram and P. L.Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Trans. Energy Convers., 22 (2) (2007), 439-449. https://ieeexplore.ieee.org/abstract/document/4207429/.
[6] M.Pahlevani et al., Digital current sensorless control of current‐driven full‐bridge DC/DC converters, IEEE Trans. Power Electron., 33 (2) (2018), 1797-1815. https://ieeexplore.ieee.org/abstract/document/7888603/.
[7] J.Wang et al., Extended state observer‐based sliding mode control for PWM‐based DC-DC buck power converter systems with mismatched disturbances, IET Contr. Theory Appl., 9 (4) (2015), 579-586. https://digital‐library.theiet.org/content/journals/10.1049/iet‐cta.2014.0220.
[8] J.Wang et al., Finite‐time output feedback control for PWM‐based DC-DC buck power converters of current sensorless mode, IEEE Trans. Control Syst. Technol., 25 (4) (2017), 1359-1371. https://ieeexplore.ieee.org/abstract/document/7589077.
[9] J.Sun et al., GPIO‐based robust control of nonlinear uncertain systems under time‐varying disturbance with application to DC-DC converter, IEEE Trans. Circuits Syst. II‐Express Briefs, 63 (11) (2016), 1074-1078. https://ieeexplore.ieee.org/abstract/document/7442854/.
[10] J.Wang et al., Finite‐time disturbance observer based non‐singular terminal sliding‐mode control for pulse width modulation based DC-DC buck converters with mismatched load disturbances, IET Power Electron., 9 (9) (2016), 1995-2002. https://digital‐library.theiet.org/content/journals/10.1049/iet‐pel.2015.0178.
[11] S.Oucheriah and L.Guo, PWM‐based adaptive sliding‐mode control for boost DC-DC converters, IEEE Trans. Ind. Electron., 60 (8) (2013), 3291-3294, https://ieeexplore.ieee.org/abstract/document/6213544/.
[12] Y.‐H.Gao, Z.‐Y.Liu, H.Chen, Observer‐based controller design of discrete‐time piecewise affine systems, Asian J. Control, 12 (4) (2010), 558-567. https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.207.
[13] Z.Zhao, S.Li, J.Yang, Continuous finite‐time sliding mode control for uncertain nonlinear systems with applications to DC-DC buck converters, Asian J. Control, 21 (1) (2019), 312-322. https://onlinelibrary.wiley.com/doi/10.1002/asjc.1914. · Zbl 1422.93054
[14] L.Chen, X.Huang, M.Liu, Observer‐based piecewise fault‐tolerant control for discrete‐time nonlinear dynamic systems, Asian J. Control, 19 (6) (2017), 2051-2061. https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.1541. · Zbl 1386.93082
[15] M. S.Shaker and A. A.Kraidi, Robust observer‐based DC-DC converter control, J. King Saud University - Engineering Sciences, (2017). https://www.sciencedirect.com/science/article/pii/S1018363917300685.
[16] J.Liu et al., Extended state observer‐based sliding‐mode control for three‐phase power converters, IEEE Trans. Ind. Electron., 64 (1) (2017), 22-31. https://ieeexplore.ieee.org/abstract/document/7569085/.
[17] M.Cristian, P.Dumitru, A.Abdel, C.Nicolai, Observer based control for a PV system modeled by a Fuzzy Takagi Sugeno model, 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, Romania, 2015, 652-657. https://ieeexplore.ieee.org/abstract/document/7321367.
[18] M.Allouche et al., Fuzzy observer‐based control for maximum power‐point tracking of a photovoltaic system, Int. J. Systems Science, 49 (5) (2018), 1061-1073. https://www.tandfonline.com/doi/abs/10.1080/00207721.2018.1433246. · Zbl 1482.93339
[19] M.Metry et al., MPPT of photovoltaic systems using sensorless current‐based model predictive control, IEEE Trans. Ind. Appl., 53 (2) (2017), 1157-1167. https://ieeexplore.ieee.org/abstract/document/7726069/.
[20] I. S.Kim and M. J.Youn, Variable‐structure observer for solar‐array current estimation in a photovoltaic power‐generation system, IEE Proc - IET Electr. Power Appl., 152 (4) (2005), 953-959. https://digital‐library.theiet.org/content/journals/10.1049/ip‐epa_20045245.
[21] M.Guisser, E.Abdelmounim, M.Aboulfatah, A.Eljouni, Nonlinear input‐output feedback linearization MPPT control based on state observer for a photovoltaic pumping system, 1er Colloque franco‐marocain sur les énergies nouvelles et renouvelables (COFMER’01), Ecole Mohammadia d’Ingénieurs, Rabat, Morocco, 2014. https://www.researchgate.net/publication/301956216_NONLINEAR_INPUT‐OUTPUT_FEEDBACK_LINEARIZATION_MPPT_CONTROL_BASED_ON_STATE_OBSERVER_FOR_A_PHOTOVOLTAIC_PUMPING_SYSTEM
[22] R.Errouissi et al., Robust feedback‐linearisation control of a boost converter feeding a grid‐tied inverter for PV applications, IET Power Electron., 11 (3) (2018), 557-565. https://digital‐library.theiet.org/content/journals/10.1049/iet‐pel.2017.0084.
[23] E.Iyasere, E.Tatlicioglu, D. M.Dawson, Backstepping PWM control for maximum power tracking in photovoltaic array systems, American Control Conference (ACC), Baltimore, MD, USA, 2010, 3561-3565. https://ieeexplore.ieee.org/abstract/document/5530833.
[24] R.Galván‐Guerra et al., Integral sliding‐mode observation and control for switched uncertain linear time invariant systems: A robustifying strategy, Asian J. Control, 20 (4) (2018), 1551-1565. https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.1661. · Zbl 1397.93042
[25] E.Jamshidpour, P.Poure, S.Saadate, Photovoltaic systems reliability improvement by real‐time FPGA‐based switch failure diagnosis and fault‐tolerant DC-DC converter, IEEE Trans. Ind. Electron., 62 (11) (2015), 7247-7255. https://ieeexplore.ieee.org/abstract/document/7083735/.
[26] M. C.diPiazza and G.Vitale, Photovoltaic Sources: Modeling and Emulation, Springer‐Verlag, London, 2012.
[27] M. H.Taghvaee et al., A current and future study on non‐isolated DC-DC converters for photovoltaic applications, Renew. Sustain. Energy Rev., 17 (2013), 216-227. https://www.sciencedirect.com/science/article/pii/S1364032112005242.
[28] M. G.Villalva, E. F.Ruppert, Input‐controlled buck converter for photovoltaic applications: Modeling and design, 4th IET Conference on Power Electronics, Machines and Drives, PEMD 2008, York, UK, 505-509. https://ieeexplore.ieee.org/abstract/document/4528890.
[29] S.Mouhadjer, A.Chermitti, A.Neçaibia, Comprehensive and field study to design a buck converter for photovoltaic systems, Revue des Energies Renouvelables, 15 (2) (2012), 321-330. https://www.cder.dz/spip.php?article546.
[30] Z.Wang et al., Robust control for disturbed buck converters based on two GPI observers, Control Eng. Practice, 66 (2017), 13-22. https://www.sciencedirect.com/science/article/pii/S0967066117301272.
[31] L.Zhang and A. Q.Huang, Model‐based fault detection of hybrid fuel cell and photovoltaic direct current power sources, J. Power Sources, 196 (2011), 5197-5204. https://www.sciencedirect.com/science/article/pii/S0378775311002175.
[32] D.Liberzon, Switching in Systems and Control, Birkhäuser, Basel, 2003. · Zbl 1036.93001
[33] O.Hegazy et al., Modeling and analysis of different control techniques of conductive battery chargers for electric vehicles applications, COMPEL: Int J. Comput. Math Electr. Electron. Eng., 34 (1) (2015), 151-172. https://www.emeraldinsight.com/doi/abs/10.1108/COMPEL‐11‐2013‐0382.
[34] A.Yahya et al., Control of grid connected photovoltaic systems with microinverters: New theoretical design and numerical evaluation, Asian J. Control, 20 (2) (2018), 906-918. https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.1704. · Zbl 1390.93115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.