×

A rotating modified JNW spacetime as a Kerr black hole mimicker. (English) Zbl 1534.83006

Summary: The Event Horizon Telescope has recently observed the images and shadows of the compact objects M87* and Sgr A* at the centres of the galaxies Messier 87 and Milky Way. This has opened up a new window in observational astronomy to probe and test gravity and fundamental physics in the strong-field regime. In this paper, we construct a rotating version of a modified Janis-Newman-Winicour metric obtained through the Simpson-Visser regularisation procedure and constrain the metric parameters using the observed shadows of M87* and Sgr A*. Depending on parameter values, the spacetime metric represents either a naked singularity or a wormhole. We find that the naked singularity case is not consistent with observations, as it casts a shadow that is much smaller than the observed ones. On the other hand, the shadow formed by the wormhole branch, depending on the parameter values, is consistent with the observations. We put constraints on the wormhole throat radius by comparing the shadow with the observed ones of M87* and Sgr A*.
{© 2023 IOP Publishing Ltd and Sissa Medialab}

MSC:

83C10 Equations of motion in general relativity and gravitational theory
83C57 Black holes

References:

[1] Akiyama, Kazunori, First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett., 875, L1 (2019) · doi:10.3847/2041-8213/ab0ec7
[2] Akiyama, Kazunori, First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring, Astrophys. J. Lett., 875, L5 (2019) · doi:10.3847/2041-8213/ab0f43
[3] Akiyama, Kazunori, First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole, Astrophys. J. Lett., 875, L6 (2019) · doi:10.3847/2041-8213/ab1141
[4] Akiyama, Kazunori, First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett., 930, L12 (2022) · doi:10.3847/2041-8213/ac6674
[5] Akiyama, Kazunori, First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett., 930, L17 (2022) · doi:10.3847/2041-8213/ac6756
[6] Carroll, Sean M., Spacetime and Geometry: An Introduction to General Relativity (2019), Cambridge University Press · Zbl 1418.83001
[7] Bambi, Cosimo; Freese, Katherine; Vagnozzi, Sunny; Visinelli, Luca, Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.044057
[8] Shaikh, Rajibul; Pal, Kunal; Pal, Kuntal; Sarkar, Tapobrata, Constraining alternatives to the Kerr black hole, Mon. Not. Roy. Astron. Soc., 506, 1229-1236 (2021) · doi:10.1093/mnras/stab1779
[9] Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano, The Current Ability to Test Theories of Gravity with Black Hole Shadows, Nature Astron., 2, 585-590 (2018) · doi:10.1038/s41550-018-0449-5
[10] Pal, Kunal; Pal, Kuntal; Shaikh, Rajibul; Sarkar, Tapobrata, Shadows in conformally related gravity theories, Phys. Lett. B, 829 (2022) · Zbl 1496.83013 · doi:10.1016/j.physletb.2022.137109
[11] Shaikh, Rajibul; Kocherlakota, Prashant; Narayan, Ramesh; Joshi, Pankaj S., Shadows of spherically symmetric black holes and naked singularities, Mon. Not. Roy. Astron. Soc., 482, 52-64 (2019) · doi:10.1093/mnras/sty2624
[12] Lee, Bum-Hoon; Lee, Wonwoo; Myung, Yun Soo, Shadow cast by a rotating black hole with anisotropic matter, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.064026
[13] Li, Song; Mirzaev, Temurbek; Abdujabbarov, Ahmadjon A.; Malafarina, Daniele; Ahmedov, Bobomurat; Han, Wen-Biao, Constraining the deformation of a rotating black hole mimicker from its shadow, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.084041
[14] Vagnozzi, Sunny, Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A, Class. Quant. Grav., 40 (2023) · doi:10.1088/1361-6382/acd97b
[15] Chen, Yifan; Roy, Rittick; Vagnozzi, Sunny; Visinelli, Luca, Superradiant evolution of the shadow and photon ring of Sgr A, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.043021
[16] Rahaman, Farook; Singh, Ksh. Newton; Shaikh, Rajibul; Manna, Tuhina; Aktar, Somi, Shadows of Lorentzian traversable wormholes, Class. Quant. Grav., 38 (2021) · Zbl 1479.85011 · doi:10.1088/1361-6382/ac213b
[17] Jusufi, Kimet; Kumar, Saurabh; Azreg-Aïnou, Mustapha; Jamil, Mubasher; Wu, Qiang; Bambi, Cosimo, Constraining wormhole geometries using the orbit of S2 star and the Event Horizon Telescope, Eur. Phys. J. C, 82, 633 (2022) · doi:10.1140/epjc/s10052-022-10603-7
[18] Pantig, Reggie C.; Övgün, Ali; Demir, Durmuş, Testing symmergent gravity through the shadow image and weak field photon deflection by a rotating black hole using the M87* and Sgr. A* results, Eur. Phys. J. C, 83, 250 (2023) · doi:10.1140/epjc/s10052-023-11400-6
[19] Sau, Subhadip; Moffat, John W., Shadow of a regular black hole in scalar-tensor-vector gravity theory, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.124003
[20] Kumar Walia, Rahul; Ghosh, Sushant G.; Maharaj, Sunil D., Testing Rotating Regular Metrics with EHT Results of Sgr A*, Astrophys. J., 939, 77 (2022) · doi:10.3847/1538-4357/ac9623
[21] Wang, Deng, Shaving the Hair of Black Hole with Sagittarius A* from Event Horizon Telescope (2022)
[22] Xu, Rui; Liang, Dicong; Shao, Lijing, Bumblebee Black Holes in Light of Event Horizon Telescope Observations, Astrophys. J., 945, 148 (2023) · doi:10.3847/1538-4357/acbdfb
[23] Nguyen, Bao; Christian, Pierre; Chan, Chi-kwan, Shadow Geometry of Kerr Naked Singularities, Astrophys. J., 954, 78 (2023) · doi:10.3847/1538-4357/ace697
[24] Chen, Songbai; Jing, Jiliang; Qian, Wei-Liang; Wang, Bin, Black hole images: A review, Sci. China Phys. Mech. Astron., 66 (2023) · doi:10.1007/s11433-022-2059-5
[25] Ghosh, Rajes; Rahman, Mostafizur; Mishra, Akash K., Regularized stable Kerr black hole: cosmic censorships, shadow and quasi-normal modes, Eur. Phys. J. C, 83, 91 (2023) · doi:10.1140/epjc/s10052-023-11252-0
[26] Shaikh, Rajibul, Testing black hole mimickers with the Event Horizon Telescope image of Sagittarius A*, Mon. Not. Roy. Astron. Soc., 523, 375-384 (2023) · doi:10.1093/mnras/stad1383
[27] Cardoso, Vitor; Pani, Paolo, Testing the nature of dark compact objects: a status report, Living Rev. Rel., 22, 4 (2019) · doi:10.1007/s41114-019-0020-4
[28] Visser, Matt, Lorentzian wormholes: From Einstein to Hawking (1995)
[29] Penrose, R., Gravitational collapse: The role of general relativity, Riv. Nuovo Cim., 1, 252-276 (1969) · Zbl 1001.83040 · doi:10.1023/A:1016578408204
[30] J.M. Bardeen, Non-singular general-relativistic gravitational collapse, in Proceedings of of international conference GR5, Tbilisi, U.S.S.R. (1968), p. 174.
[31] Maeda, Hideki, Quest for realistic non-singular black-hole geometries: regular-center type, JHEP, 11, 108 (2022) · Zbl 1536.83067 · doi:10.1007/JHEP11(2022)108
[32] Lan, Chen; Yang, Hao; Guo, Yang; Miao, Yan-Gang, Regular Black Holes: A Short Topic Review, Int. J. Theor. Phys., 62, 202 (2023) · Zbl 1532.83074 · doi:10.1007/s10773-023-05454-1
[33] Simpson, Alex; Visser, Matt, Black-bounce to traversable wormhole, JCAP, 02 (2019) · Zbl 1541.83058 · doi:10.1088/1475-7516/2019/02/042
[34] Simpson, Alex; Martin-Moruno, Prado; Visser, Matt, Vaidya spacetimes, black-bounces, and traversable wormholes, Class. Quant. Grav., 36 (2019) · Zbl 1503.83013 · doi:10.1088/1361-6382/ab28a5
[35] Franzin, Edgardo; Liberati, Stefano; Mazza, Jacopo; Simpson, Alex; Visser, Matt, Charged black-bounce spacetimes, JCAP, 07 (2021) · Zbl 1485.83075 · doi:10.1088/1475-7516/2021/07/036
[36] Bambhaniya, Parth; K, Saurabh; Jusufi, Kimet; Joshi, Pankaj S., Thin accretion disk in the Simpson-Visser black-bounce and wormhole spacetimes, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.023021
[37] Guerrero, Merce; Olmo, Gonzalo J.; Rubiera-Garcia, Diego; Gómez, Diego Sáez-Chillón, Shadows and optical appearance of black bounces illuminated by a thin accretion disk, JCAP, 08 (2021) · Zbl 1492.85015 · doi:10.1088/1475-7516/2021/08/036
[38] Ou, Min-Yan; Lai, Meng-Yun; Huang, Hyat, Echoes from asymmetric wormholes and black bounce, Eur. Phys. J. C, 82, 452 (2022) · doi:10.1140/epjc/s10052-022-10421-x
[39] Chataignier, Leonardo; Kamenshchik, Alexander Yu.; Tronconi, Alessandro; Venturi, Giovanni, Regular black holes, universes without singularities, and phantom-scalar field transitions, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.023508
[40] Yang, Yi; Liu, Dong; Övgün, Ali; Long, Zheng-Wen; Xu, Zhaoyi, Quasinormal modes of Kerr-like black bounce spacetime (2022)
[41] Rodrigues, Manuel E.; Silva, Marcos V. de S., Black-bounces with multiple throats and anti-throats, Class. Quant. Grav., 40 (2023) · Zbl 1533.83010 · doi:10.1088/1361-6382/ad0195
[42] Tsukamoto, Naoki, Retrolensing by two photon spheres of a black-bounce spacetime, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.084036
[43] Chakrabarti, Soumya; Kar, Sayan, Wormhole geometry from gravitational collapse, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.024071
[44] Huang, Hyat; Yang, Jinbo, Charged Ellis Wormhole and Black Bounce, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.124063
[45] Barrientos, José; Cisterna, Adolfo; Mora, Nicolás; Viganò, Adriano, AdS-Taub-NUT spacetimes and exact black bounces with scalar hair, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.024038
[46] Rodrigues, Manuel E.; Silva, Marcos V. de S., Source of black bounces in general relativity, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.044064
[47] Furtado, Job; Alencar, Geová, BTZ Black-Bounce to Traversable Wormhole, Universe, 8, 625 (2022) · doi:10.3390/universe8120625
[48] Ghosh, Saptaswa; Bhattacharyya, Arpan, Analytical study of gravitational lensing in Kerr-Newman black-bounce spacetime, JCAP, 11 (2022) · Zbl 1518.83090 · doi:10.1088/1475-7516/2022/11/006
[49] Guo, Yang; Miao, Yan-Gang, Charged black-bounce spacetimes: Photon rings, shadows and observational appearances, Nucl. Phys. B, 983 (2022) · Zbl 1507.83072 · doi:10.1016/j.nuclphysb.2022.115938
[50] Bronnikov, K. A., Black bounces, wormholes, and partly phantom scalar fields, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.064029
[51] Pal, Kunal; Pal, Kuntal; Roy, Pratim; Sarkar, Tapobrata, Regularizing the JNW and JMN naked singularities, Eur. Phys. J. C, 83, 397 (2023) · doi:10.1140/epjc/s10052-023-11558-z
[52] Janis, Allen I.; Newman, Ezra T.; Winicour, Jeffrey, Reality of the Schwarzschild Singularity, Phys. Rev. Lett., 20, 878-880 (1968) · doi:10.1103/PhysRevLett.20.878
[53] Damour, Thibault; Solodukhin, Sergey N., Wormholes as black hole foils, Phys. Rev. D, 76 (2007) · Zbl 1222.83095 · doi:10.1103/PhysRevD.76.024016
[54] Newman, E. T.; Janis, A. I., Note on the Kerr spinning particle metric, J. Math. Phys., 6, 915-917 (1965) · Zbl 0142.46305 · doi:10.1063/1.1704350
[55] Newman, E. T.; Couch, R.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R., Metric of a Rotating, Charged Mass, J. Math. Phys., 6, 918-919 (1965) · doi:10.1063/1.1704351
[56] Azreg-Aïnou, Mustapha, From static to rotating to conformal static solutions: Rotating imperfect fluid wormholes with(out) electric or magnetic field, Eur. Phys. J. C, 74, 2865 (2014) · doi:10.1140/epjc/s10052-014-2865-8
[57] Azreg-Ainou, Mustapha, Regular and conformal regular cores for static and rotating solutions, Phys. Lett. B, 730, 95-98 (2014) · Zbl 1381.83052 · doi:10.1016/j.physletb.2014.01.041
[58] Azreg-Aïnou, Mustapha, Generating rotating regular black hole solutions without complexification, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.064041
[59] Virbhadra, K. S.; Narasimha, D.; Chitre, S. M., Role of the scalar field in gravitational lensing, Astron. Astrophys., 337, 1-8 (1998)
[60] Virbhadra, K. S.; Ellis, G. F. R., Gravitational lensing by naked singularities, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.103004
[61] Virbhadra, K. S.; Keeton, C. R., Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.124014
[62] Gyulchev, Galin N.; Yazadjiev, Stoytcho S., Gravitational Lensing by Rotating Naked Singularities, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.083004
[63] Atamurotov, Farruh; Ghosh, Sushant G., Gravitational weak lensing by a naked singularity in plasma, Eur. Phys. J. Plus, 137, 662 (2022) · doi:10.1140/epjp/s13360-022-02885-3
[64] Jusufi, Kimet; Banerjee, Ayan; Gyulchev, Galin; Amir, Muhammed, Distinguishing rotating naked singularities from Kerr-like wormholes by their deflection angles of massive particles, Eur. Phys. J. C, 79, 28 (2019) · doi:10.1140/epjc/s10052-019-6557-2
[65] Gyulchev, Galin; Nedkova, Petya; Vetsov, Tsvetan; Yazadjiev, Stoytcho, Image of the Janis-Newman-Winicour naked singularity with a thin accretion disk, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.024055
[66] Deliyski, Valentin; Gyulchev, Galin; Nedkova, Petya; Yazadjiev, Stoytcho, Polarized image of equatorial emission in horizonless spacetimes: naked singularities (2023)
[67] Chauvineau, Bertrand, Lensing by a Fisher-Janis-Newman-Winicour naked singularity: Observational issues related to the existence of caustic bending in the strongly scalarized case, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.024071
[68] Chowdhury, Anirban N.; Patil, Mandar; Malafarina, Daniele; Joshi, Pankaj S., Circular geodesics and accretion disks in Janis-Newman-Winicour and Gamma metric, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.104031
[69] Zhou, Sheng; Zhang, Ruanjing; Chen, Juhua; Wang, Yongjiu, Geodesic structure of Janis-Newman-Winicour space-time, Int. J. Theor. Phys., 54, 2905-2920 (2015) · Zbl 1330.83009 · doi:10.1007/s10773-015-2526-1
[70] Joshi, Ashok B.; Bambhaniya, Parth; Dey, Dipanjan; Joshi, Pankaj S., Timelike Geodesics in Naked Singularity and Black Hole Spacetimes II (2019)
[71] Ota, Keisuke; Kobayashi, Shinpei; Nakashi, Keisuke, Revisiting timelike geodesics in the Fisher-Janis-Newman-Winicour-Wyman spacetime, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.024037
[72] Zhdanov, V. I.; Stashko, O. S., Static spherically symmetric configurations with N nonlinear scalar fields: Global and asymptotic properties, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.064064
[73] Stashko, Oleksandr; Zhdanov, Valery I., Singularities in Static Spherically Symmetric Configurations of General Relativity with Strongly Nonlinear Scalar Fields, Galaxies, 9, 72 (2021) · doi:10.3390/galaxies9040072
[74] Stashko, O. S.; Zhdanov, V. I.; Alexandrov, A. N., Thin accretion discs around spherically symmetric configurations with nonlinear scalar fields, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.104055
[75] Nandi, Kamal Kanti; Zhang, Yuan-Zhong; Zakharov, Alexander V., Gravitational lensing by wormholes, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.024020
[76] Nakajima, Koki; Asada, Hideki, Deflection angle of light in an Ellis wormhole geometry, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.107501
[77] Gyulchev, Galin; Nedkova, Petya; Tinchev, Vassil; Yazadjiev, Stoytcho, On the shadow of rotating traversable wormholes, Eur. Phys. J. C, 78, 544 (2018) · doi:10.1140/epjc/s10052-018-6012-9
[78] Abdujabbarov, Ahmadjon; Juraev, Bakhtinur; Ahmedov, Bobomurat; Stuchlík, Zdeněk, Shadow of rotating wormhole in plasma environment, Astrophys. Space Sci., 361, 226 (2016) · doi:10.1007/s10509-016-2818-9
[79] Amir, Muhammed; Jusufi, Kimet; Banerjee, Ayan; Hansraj, Sudan, Shadow images of Kerr-like wormholes, Class. Quant. Grav., 36 (2019) · Zbl 1478.85006 · doi:10.1088/1361-6382/ab42be
[80] Peng, Jun; Guo, Minyong; Feng, Xing-Hui, Observational signature and additional photon rings of an asymmetric thin-shell wormhole, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.124010
[81] Tsukamoto, Naoki, Gravitational lensing by two photon spheres in a black-bounce spacetime in strong deflection limits, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.064022
[82] Guerrero, Merce; Olmo, Gonzalo J.; Rubiera-Garcia, Diego; Gómez Sáez-Chillón, Diego, Light ring images of double photon spheres in black hole and wormhole spacetimes, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.084057
[83] Chen, Yiqian; Wang, Peng; Wu, Houwen; Yang, Haitang, Observational appearance of a freely-falling star in an asymmetric thin-shell wormhole, Eur. Phys. J. C, 83, 361 (2023) · doi:10.1140/epjc/s10052-023-11486-y
[84] Shaikh, Rajibul, Shadows of rotating wormholes, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.024044
[85] Shaikh, Rajibul; Banerjee, Pritam; Paul, Suvankar; Sarkar, Tapobrata, A novel gravitational lensing feature by wormholes, Phys. Lett. B, 789, 270-275 (2019) · Zbl 1406.83004 · doi:10.1016/j.physletb.2018.12.030
[86] Shaikh, Rajibul; Banerjee, Pritam; Paul, Suvankar; Sarkar, Tapobrata, Strong gravitational lensing by wormholes, JCAP, 07 (2019) · Zbl 1515.83045 · doi:10.1088/1475-7516/2019/07/028
[87] Kamenshchik, Alexander; Petriakova, Polina, Newman-Janis algorithm’s application to regular black hole models, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.124020
[88] Virbhadra, K. S., Janis-Newman-Winicour and Wyman solutions are the same, Int. J. Mod. Phys. A, 12, 4831-4836 (1997) · Zbl 0902.53061 · doi:10.1142/S0217751X97002577
[89] Virbhadra, K. S.; Jhingan, S.; Joshi, P. S., Nature of singularity in Einstein massless scalar theory, Int. J. Mod. Phys. D, 6, 357-362 (1997) · doi:10.1142/S0218271897000200
[90] Mazza, Jacopo; Franzin, Edgardo; Liberati, Stefano, A novel family of rotating black hole mimickers, JCAP, 04 (2021) · Zbl 1503.83010 · doi:10.1088/1475-7516/2021/04/082
[91] Lima Junior., Haroldo C. D.; Crispino, Luís C. B.; Cunha, Pedro V. P.; Herdeiro, Carlos A. R., Can different black holes cast the same shadow?, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.084040
[92] Xu, Zhaoyi; Tang, Meirong, Rotating spacetime: black-bounces and quantum deformed black hole, Eur. Phys. J. C, 81, 863 (2021) · doi:10.1140/epjc/s10052-021-09635-2
[93] Solanki, Divyesh N.; Bambhaniya, Parth; Dey, Dipanjan; Joshi, Pankaj S.; Pathak, Kamlesh N., Shadows and precession of orbits in rotating Janis-Newman-Winicour spacetime, Eur. Phys. J. C, 82, 77 (2022) · doi:10.1140/epjc/s10052-022-10045-1
[94] Nandi, Kamal K.; Islam, Anwarul; Evans, James, Brans wormholes, Phys. Rev. D, 55, 2497-2500 (1997) · doi:10.1103/PhysRevD.55.2497
[95] Morris, M. S.; Thorne, K. S., Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys., 56, 395-412 (1988) · Zbl 0957.83529 · doi:10.1119/1.15620
[96] S. Chandrasekhar, The mathematical theory of black holes, Clarendon, U.K. (1983). · Zbl 0511.53076
[97] Shaikh, Rajibul, Black hole shadow in a general rotating spacetime obtained through Newman-Janis algorithm, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.024028
[98] Gravity collaboration et al., VizieR online data catalog: SgrA* orbital motions with GRAVITY, VizieR Online Data Catalog (2018) J/A+A/618/L10. · doi:10.26093/cds/vizier.36189010
[99] Bronzwaer, Thomas; Davelaar, Jordy; Younsi, Ziri; Mościbrodzka, Monika; Olivares, Héctor; Mizuno, Yosuke; Vos, Jesse; Falcke, Heino, Visibility of Black Hole Shadows in Low-luminosity AGN, Mon. Not. Roy. Astron. Soc., 501, 4722-4747 (2021) · doi:10.1093/mnras/staa3430
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.