×

Influence of flow-fiber coupling during mold-filling on the stress field in short-fiber reinforced composites. (English) Zbl 1518.74022

Summary: The anisotropic elastic properties of injection molded composites are fundamentally coupled to the flow of the fiber suspension during mold-filling. Regarding the modeling of mold-filling processes, both a decoupled and a flow-fiber coupled approach are possible. In the latter, the fiber-induced viscous anisotropy is considered in the computation of the flow field. This in turn influences the evolution of the fiber orientation compared to the decoupled case. This study investigates how flow-fiber coupling in mold-filling simulation affects the stress field in the solid composite under load based on the final elastic properties after fluid-solid transition. Furthermore, the effects of Newtonian and non-Newtonian polymer matrix behavior are investigated and compared. The entire process is modeled micromechanically unified based on mean-field homogenization, both for the fiber suspension and for the solid composite. Different numerical stabilization methods of the mold-filling simulation are discussed in detail. Short glass fibers with a typical aspect ratio of 20 and a volume fraction of 20% are considered, embedded in polypropylene matrix material. The results show that the flow-fiber coupling has a large effect on the fiber orientation tensor in the range of over \(\pm30\)% with respect to the decoupled simulation. As a consequence, the flow-fiber coupling affects the stress field in the solid composite under load in the range of over \(\pm 10\)%. In addition, the predictions based on a non-Newtonian modeling of the matrix fluid differ significantly from the Newtonian setup and thus the necessity to consider the shear-thinning behavior is justified in a quantifiable manner.

MSC:

74E30 Composite and mixture properties
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
76T20 Suspensions
76A05 Non-Newtonian fluids
74S99 Numerical and other methods in solid mechanics
76M99 Basic methods in fluid mechanics

References:

[1] Latz, A.; Strautins, U.; Niedziela, D., Comparative numerical study of two concentrated fiber suspension models, J Nonnewton Fluid Mech, 165, 13, 764-781 (2010) · Zbl 1274.76346 · doi:10.1016/j.jnnfm.2010.04.001
[2] Altan, MC; Güceri, SI; Pipes, RB, Anisotropic channel flow of fiber suspensions, J Nonnewton Fluid Mech, 42, 1, 65-83 (1992) · Zbl 0746.76002 · doi:10.1016/0377-0257(92)80005-I
[3] Tang, L.; Altan, MC, Entry flow of fiber suspensions in a straight channel, J Nonnewton Fluid Mech, 56, 2, 183-216 (1995) · doi:10.1016/0377-0257(94)01280-U
[4] Krochak, PJ; Olson, JA; Martinez, DM, Fiber suspension flow in a tapered channel: the effect of flow/fiber coupling, Int J Multiph Flow, 35, 7, 676-688 (2009) · doi:10.1016/j.ijmultiphaseflow.2009.03.005
[5] Mezi, D.; Ausias, G.; Advani, SG; Férec, J., Fiber suspension in 2D nonhomogeneous flow: the effects of flow/fiber coupling for Newtonian and power-law suspending fluids, J Rheol, 63, 3, 405-418 (2019) · doi:10.1122/1.5081016
[6] Férec, J.; Mezi, D.; Advani, SG; Ausias, G., Axisymmetric flow simulations of fiber suspensions as described by 3D probability distribution function, J Nonnewton Fluid Mech, 284 (2020) · doi:10.1016/j.jnnfm.2020.104367
[7] Mezi, D.; Ausias, G.; Grohens, Y.; Férec, J., Numerical simulation and modeling of the die swell for fiber suspension flows, J Nonnewton Fluid Mech, 274, 104205 (2019) · doi:10.1016/j.jnnfm.2019.104205
[8] Li, T.; Luyé, JF, Flow-fiber coupled viscosity in injection molding simulations of short fiber reinforced thermoplastics, Int Polym Proc, 34, 2, 158-171 (2019) · doi:10.3139/217.3706
[9] Folgar, F.; Tucker, CL, Orientation behavior of fibers in concentrated suspensions, J Reinf Plast Compos, 3, 2, 98-119 (1984) · doi:10.1177/073168448400300201
[10] Advani, SG; Tucker, CL, The use of tensors to describe and predict fiber orientation in short fiber composites, J Rheol, 31, 8, 751-784 (1987) · doi:10.1122/1.549945
[11] Wang, J.; O’Gara, JF; Tucker, CL, An objective model for slow orientation kinetics in concentrated fiber suspensions: theory and rheological evidence, J Rheol, 52, 5, 1179-1200 (2008) · doi:10.1122/1.2946437
[12] Li T, Luyé JF (2018) Optimization of fiber orientation model parameters in the presence of flow-fiber coupling. J Compos Sci 2(4). doi:10.3390/jcs2040073
[13] Tseng, HC; Favaloro, AJ, The use of informed isotropic constitutive equation to simulate anisotropic rheological behaviors in fiber suspensions, J Rheol, 63, 2, 263-274 (2019) · doi:10.1122/1.5064727
[14] Dinh, SM; Armstrong, RC, A rheological equation of state for semi-concentrated fiber suspensions, J Rheol, 28, 3, 207-227 (1984) · Zbl 0552.76009 · doi:10.1122/1.549748
[15] Lipscomb, GG; Denn, MM; Hur, DU; Boger, DV, The flow of fiber suspensions in complex geometries, J Nonnewton Fluid Mech, 26, 3, 297-325 (1988) · doi:10.1016/0377-0257(88)80023-5
[16] Huang CT, Lai CH (2020) Investigation on the coupling effects between flow and fibers on fiber-reinforced plastic (FRP) injection parts. Polymers 12(10). doi:10.3390/polym12102274
[17] Lee, S.; Shin, D.; Kim, G.; Ji, W., Numerical model for compression molding process of hybridly laminated thermoplastic composites based on anisotropic rheology, Compos Part C Open Access, 7, 100215 (2022) · doi:10.1016/j.jcomc.2021.100215
[18] Sommer, DE; Favaloro, AJ; Pipes, RB, Coupling anisotropic viscosity and fiber orientation in applications to squeeze flow, J Rheol, 62, 3, 669-679 (2018) · doi:10.1122/1.5013098
[19] Wittemann, F.; Maertens, R.; Kärger, L.; Henning, F., Injection molding simulation of short fiber reinforced thermosets with anisotropic and non-Newtonian flow behavior, Compos A Appl Sci Manuf, 124, 105476 (2019) · doi:10.1016/j.compositesa.2019.105476
[20] Chung, DH; Kwon, TH, Numerical studies of fiber suspensions in an axisymmetric radial diverging flow: the effects of modeling and numerical assumptions, J Nonnewton Fluid Mech, 107, 1, 67-96 (2002) · Zbl 1100.76583 · doi:10.1016/S0377-0257(02)00142-8
[21] Chung, DH; Kwon, TH, Fiber orientation in the processing of polymer composites, Korea Aust Rheol J, 14, 4, 175-188 (2002)
[22] Wang Z, Smith DE (2019) Simulation of mutually dependent polymer flow and fiber filled in polymer composite deposition additive manufacturing. In: Solid freeform fabrication 2019: proceedings of the 30th annual international solid freeform fabrication symposium—an additive manufacturing conference. doi:10.26153/tsw/17360
[23] Wang Z, Smith DE (2021) A fully coupled simulation of planar deposition flow and fiber orientation in polymer composites additive manufacturing. Materials 14(10). doi:10.3390/ma14102596
[24] Karl, T.; Gatti, D.; Böhlke, T.; Frohnapfel, B., Coupled simulation of flow-induced viscous and elastic anisotropy of short-fiber reinforced composites, Acta Mech, 232, 6, 2249-2268 (2021) · Zbl 1489.74007 · doi:10.1007/s00707-020-02897-z
[25] Böhlke, T.; Brüggemann, C., Graphical representation of the generalized Hooke’s law, Tech Mech, 21, 2, 145-158 (2001)
[26] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall, 21, 5, 571-574 (1973) · doi:10.1016/0001-6160(73)90064-3
[27] Brylka B Charakterisierung und Modellierung der Steifigkeit von langfaserverstärktem Polypropylen. Doctoral thesis. Schriftenreihe Kontinuumsmechanik im Maschinenbau Band 10. Karlsruher Institut für Technologie (KIT). doi:10.5445/KSP/1000070061
[28] Wang, Z.; Smith, DE, Finite element modelling of fully-coupled flow/fiber-orientation effects in polymer composite deposition additive manufacturing nozzle-extrudate flow, Compos B Eng, 219, 108811 (2021) · doi:10.1016/j.compositesb.2021.108811
[29] Wang, Z., Exploring the applicability of a simplified fully coupled flow/orientation algorithm developed for polymer composites extrusion deposition additive manufacturing, Int Polym Proc, 37, 1, 106-119 (2022) · doi:10.1515/ipp-2021-4186
[30] Kanatani, KI, Distribution of directional data and fabric tensors, Int J Eng Sci, 22, 2, 149-164 (1984) · Zbl 0586.73004 · doi:10.1016/0020-7225(84)90090-9
[31] Karl, T.; Gatti, D.; Frohnapfel, B.; Böhlke, T., Asymptotic fiber orientation states of the quadratically closed Folgar-Tucker equation and a subsequent closure improvement, J Rheol, 65, 5, 999-1022 (2021) · doi:10.1122/8.0000245
[32] Advani, SG; Tucker, CL, Closure approximations for three-dimensional structure tensors, J Rheol, 34, 3, 367-386 (1990) · doi:10.1122/1.550133
[33] Cintra, JS; Tucker, CL, Orthotropic closure approximations for flow-induced fiber orientation, J Rheol, 39, 6, 1095-1122 (1995) · doi:10.1122/1.550630
[34] Chung, DH; Kwon, TH, Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation, J Rheol, 46, 1, 169-194 (2002) · doi:10.1122/1.1423312
[35] Jeffery, GB, The motion of ellipsoidal particles immersed in a viscous fluid, Proc R Soc Lond Ser A, 102, 715, 161-179 (1922) · JFM 49.0748.02 · doi:10.1098/rspa.1922.0078
[36] Altan, MC; Tang, L., Orientation tensors in simple flows of dilute suspensions of non-Brownian rigid ellipsoids, comparison of analytical and approximate solutions, Rheol Acta, 32, 3, 227-244 (1993) · doi:10.1007/BF00434187
[37] Bauer, JK; Böhlke, T., Variety of fiber orientation tensors, Math Mech Solids, 27, 7, 1185-1211 (2022) · Zbl 07601704 · doi:10.1177/10812865211057602
[38] Bertóti R, Böhlke T (2017) Flow-induced anisotropic viscosity in short FRPs. Mech Adv Mater Mod Process 3(1). doi:10.1186/s40759-016-0016-7
[39] Bertóti, R.; Wicht, D.; Hrymak, A.; Schneider, M.; Böhlke, T., A computational investigation of the effective viscosity of short-fiber reinforced thermoplastics by an FFT-based method, Eur J Mech B Fluids, 90, 99-113 (2021) · Zbl 1494.76097 · doi:10.1016/j.euromechflu.2021.08.004
[40] Karl, T.; Böhlke, T., Unified mean-field modeling of viscous short-fiber suspensions and solid short-fiber reinforced composites, Arch Appl Mech, 92, 12, 3695-3727 (2022) · doi:10.1007/s00419-022-02257-4
[41] Ponte Castañeda, P.; Willis, JR, The effect of spatial distribution on the effective behavior of composite materials and cracked media, J Mech Phys Solids, 43, 12, 1919-1951 (1995) · Zbl 0919.73061 · doi:10.1016/0022-5096(95)00058-Q
[42] Noh WF, Woodward P (1976) SLIC (Simple Line Interface Calculation). In: van de Vooren AI, Zandbergen PJ (eds) Proceedings of the fifth international conference on numerical methods in fluid dynamics June 28-July 2, Twente University, Enschede. Springer, Berlin, p 330-340. doi:10.1007/3-540-08004-X_336 · Zbl 0382.76084
[43] Hirt, CW; Nichols, BD, Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 1, 201-225 (1981) · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[44] Brackbill, JU; Kothe, DB; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 2, 335-354 (1992) · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y
[45] Cross, MM, Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems, J Colloid Sci, 20, 5, 417-437 (1965) · doi:10.1016/0095-8522(65)90022-X
[46] Thevenin, P.; Perreux, D., The use of homogenization methods for estimating anisotropic viscosities of composite melts, Compos Sci Technol, 56, 5, 595-603 (1996) · doi:10.1016/0266-3538(96)00046-2
[47] Nemat-Nasser, S.; Hori, M., Micromechanics: overall properties of heterogeneous materials (1993), Amsterdam: North-Holland Series in Applied Mathematics and Mechanics, Amsterdam · Zbl 0924.73006
[48] Kanaun, SK; Levin, VM, Self-consistent methods for composites: vol. 1: static problems of solid mechanics and its applications (2008), Dordrecht: Springer, Dordrecht · Zbl 1142.74003
[49] Hessman, PA; Welschinger, F.; Hornberger, K.; Böhlke, T., On mean field homogenization schemes for short fiber reinforced composites: unified formulation, application and benchmark, Int J Solids Struct, 230-231 (2021) · doi:10.1016/j.ijsolstr.2021.111141
[50] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J Mech Phys Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[51] Mandel, J., Generalization dans R9 de la regle du potential plastique pour un element polycrystallin, Comptes rendus de l’Académie des sciences, 290, 22, 481-484 (1980)
[52] Torquato, S., Random heterogeneous materials: microstructure and macroscopic properties. Interdisciplinary applied mathematics (2002), New York: Springer, New York · Zbl 0988.74001
[53] Haagh GAAV, Van De Vosse FN (1998) Simulation of three-dimensional polymer mould filling processes using a pseudo-concentration method. Int J Numer Methods Fluids 28(9):1355-1369 · Zbl 0947.76051
[54] OpenFOAM^® (2022) OpenFOAM documentation version 2106. Consulted on February 09. https://www.openfoam.com/documentation/overview
[55] Roenby, J.; Bredmose, H.; Jasak, H., A computational method for sharp interface advection, R Soc Open Sci, 3, 11 (2016) · doi:10.1098/rsos.160405
[56] Scheufler, H.; Roenby, J., Accurate and efficient surface reconstruction from volume fraction data on general meshes, J Comput Phys, 383, 1-23 (2019) · Zbl 1451.76080 · doi:10.1016/j.jcp.2019.01.009
[57] Gamet, L.; Scala, M.; Roenby, J.; Scheufler, H.; Pierson, JL, Validation of volume-of-fluid OpenFOAM®isoAdvector solvers using single bubble benchmarks, Comput Fluids, 213 (2020) · Zbl 1521.76421 · doi:10.1016/j.compfluid.2020.104722
[58] Larsen, B.; Fuhrman, D.; Roenby, J., Performance of interFoam on the simulation of progressive waves, Coast Eng J, 61, 3, 380-400 (2019) · doi:10.1080/21664250.2019.1609713
[59] Harper, CA, Modern plastics handbook (2000), New York: McGraw-Hill, New York
[60] Schürmann, H., Konstruieren mit Faser-Kunststoff-Verbunden (2007), Berlin: Springer, Berlin · doi:10.1007/978-3-540-72190-1
[61] Osswald, TA; Rudolph, N., Polymer rheology: fundamentals and applications (2015), München: Hanser, München
[62] Osswald, TA; Baur, E.; Brinkmann, S.; Oberbach, K.; Schmachtenberg, E., International plastics handbook: the resource for plastics engineers (2006), München: Hanser, München · doi:10.3139/9783446407923
[63] Farotti E, Natalini M (2018) Injection molding. Influence of process parameters on mechanical properties of polypropylene polymer. A first study. Procedia Struct Integr 8:256-264. AIAS2017—46th conference on stress analysis and mechanical engineering design, 6-9 Sept 2017, Pisa, Italy. doi:10.1016/j.prostr.2017.12.027
[64] Wang J, Mao Q, Jiang N, Chen J (2022) Effects of injection molding parameters on properties of insert-injection molded polypropylene single-polymer composites. Polymers 14(1). doi:10.3390/polym14010023
[65] Voinov, OV, Hydrodynamics of wetting, Fluid Dyn, 11, 5, 714-721 (1976) · doi:10.1007/BF01012963
[66] Cox, RG, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J Fluid Mech, 168, 169-194 (1986) · Zbl 0597.76102 · doi:10.1017/S0022112086000332
[67] Wörner, M.; Cai, X.; Alla, H.; Yue, P., A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped droplets using Cox theory, Fluid Dyn Res, 50, 3 (2018) · doi:10.1088/1873-7005/aaaef6
[68] Hétu, JF; Gao, DM; Garcia-Rejon, A.; Salloum, G., 3D finite element method for the simulation of the filling stage in injection molding, Polym Eng Sci, 38, 2, 223-236 (1998) · doi:10.1002/pen.10183
[69] Chang, RY; Yang, WH, Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach, Int J Numer Methods Fluids, 37, 2, 125-148 (2001) · Zbl 1078.76564 · doi:10.1002/fld.166
[70] Ospald, F., Numerical simulation of injection molding using OpenFOAM, Proc Appl Math Mech, 14, 1, 673-674 (2014) · doi:10.1002/pamm.201410320
[71] Gajek, S.; Schneider, M.; Böhlke, T., An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components, Comput Methods Appl Mech Eng, 384 (2021) · Zbl 1506.74089 · doi:10.1016/j.cma.2021.113952
[72] Kuzmin, D., planar and orthotropic closures for orientation tensors in fiber suspension flow models, SIAM J Appl Math, 78, 6, 3040-3059 (2018) · Zbl 06979318 · doi:10.1137/18M1175665
[73] Cardiff P, Tuković Z̆. solids4foam-release Bitbucket repository. Consulted on 24 May 2022. https://bitbucket.org/philip_cardiff/solids4foam-release/src/master/
[74] Cardiff P, Karac̆ A, De Jaeger P, Jasak H, Nagy J, Ivanković A et al (2018) An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. doi:10.48550/arXiv:1808.10736
[75] Shayegh A (2020) Block-coupled Finite Volume algorithms: a solids4Foam tutorial. In: Nilsson H (ed) Proceedings of CFD with OpenSource software. doi:10.17196/OS_CFD#YEAR_2020
[76] Cardiff P, Demirdz̆ić I (2021) Thirty years of the finite volume method for solid mechanics. Arch Comput Methods Eng 28(5):3721-3780. doi:10.1007/s11831-020-09523-0
[77] Huilgol, RR; You, Z., On the importance of the pressure dependence of viscosity in steady non-isothermal shearing flows of compressible and incompressible fluids and in the isothermal fountain flow, J Nonnewton Fluid Mech, 136, 2, 106-117 (2006) · Zbl 1195.76025 · doi:10.1016/j.jnnfm.2006.03.011
[78] Lee, SL; Liao, WC, Numerical simulation of a fountain flow on nonstaggered Cartesian grid system, Int J Heat Mass Transf, 51, 9, 2433-2443 (2008) · Zbl 1388.76009 · doi:10.1016/j.ijheatmasstransfer.2007.08.030
[79] Borzenko, EI; Shrager, GR, Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel, J Appl Mech Tech Phys, 56, 2, 167-176 (2015) · doi:10.1134/S0021894415020017
[80] Ferziger, JH; Perić, M.; Street, RL, Computational methods for fluid dynamics (2020), Cham: Springer, Cham · Zbl 1452.76001 · doi:10.1007/978-3-319-99693-6
[81] Paschkewitz, JS; Dubief, Y.; Dimitropoulos, CD; Shaqfeh, ESG; Moin, P., Numerical simulation of turbulent drag reduction using rigid fibres, J Fluid Mech, 518, 281-317 (2004) · Zbl 1067.76053 · doi:10.1017/S0022112004001144
[82] Min T, Yoo JY, Choi H (2001) Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows. J Nonnewton Fluid Mech 100(1):27-47. doi:10.1016/S0377-0257(01)00128-8 · Zbl 1134.76409
[83] Linn J (2005) The Folgar-Tucker model as a differential algebraic system for fiber orientation calculation. Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (75). http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-13808
[84] Verweyst, BE; Tucker, CL, Fiber suspensions in complex geometries: flow/orientation coupling, Can J Chem Eng, 80, 6, 1093-1106 (2002) · doi:10.1002/cjce.5450800611
[85] Seng S, Monroy C, Malenica S (2017) On the use of Euler and Crank-Nicolson time-stepping schemes for seakeeping simulations in OpenFOAM. In: MARINE VII : proceedings of the VII international conference on computational methods in marine engineering, pp 905-920. https://upcommons.upc.edu/handle/2117/332090
[86] Jasak H, Weller HG (2000) Application of the finite volume method and unstructured meshes to linear elasticity. Int J Numer Methods Eng 48(2):267-287 · Zbl 0990.74077
[87] Cardiff P, Z̆ Tuković, Jasak H, Ivanković A (2016) A block-coupled finite volume methodology for linear elasticity and unstructured meshes. Comput Struct 175:100-122. doi:10.1016/j.compstruc.2016.07.004
[88] Rhie, CM; Chow, WL, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J, 21, 11, 1525-1532 (1983) · Zbl 0528.76044 · doi:10.2514/3.8284
[89] Demirdz̆ić I, Muzaferija S (1995) Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput Methods Appl Mech Eng. 125(1):235-255. doi:10.1016/0045-7825(95)00800-G
[90] Demirdz̆ić I (2020) Finite volumes vs finite elements. There is a choice. Coupled Syst Mech 9(1):5-28. doi:10.12989/csm.2020.9.1.005
[91] Dietemann, B.; Bierwisch, C., Predicting particle orientation: is an accurate flow field more important than the actual orientation model?, J Nonnewton Fluid Mech, 310 (2022) · doi:10.1016/j.jnnfm.2022.104927
[92] Tucker, CL, Flow regimes for fiber suspensions in narrow gaps, J Nonnewton Fluid Mech, 39, 3, 239-268 (1991) · doi:10.1016/0377-0257(91)80017-E
[93] Spurk, JH; Aksel, N., Fluid mechanics (2020), Cham: Springer, Cham · Zbl 1485.76002 · doi:10.1007/978-3-030-30259-7
[94] Perez, M.; Scheuer, A.; Abisset-Chavanne, E.; Chinesta, F.; Keunings, R., A multi-scale description of orientation in simple shear flows of confined rod suspensions, J Nonnewton Fluid Mech, 233, 61-74 (2016) · doi:10.1016/j.jnnfm.2016.01.011
[95] Scheuer, A.; Abisset-Chavanne, E.; Chinesta, F.; Keunings, R., Second-gradient modelling of orientation development and rheology of dilute confined suspensions, J Nonnewton Fluid Mech, 237, 54-64 (2016) · doi:10.1016/j.jnnfm.2016.10.004
[96] Heinen K. Mikrostrukturelle Orientierungszustände strömender Polymerlösungen und Fasersuspensionen. Doctoral thesis. Technische Universität Dortmund. https://eldorado.tu-dortmund.de/handle/2003/24559
[97] Ansys Granta EduPack^® (2022) Datasheet for PP-GF40. Consulted on 12 July 2022. https://www.ansys.com/de-de/products/materials/granta-edupack
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.