×

Exact tensor closures for the three-dimensional Jeffery’s equation. (English) Zbl 1241.76402

Summary: This paper presents an exact formula for calculating the fourth-moment tensor from the second-moment tensor for the three-dimensional Jeffery’s equation. Although this approach falls within the category of a moment tensor closure, it does not rely upon an approximation, either analytic or curve fit, of the fourth-moment tensor as do previous closures. This closure is orthotropic, or equivalently, a natural closure. The existence of these explicit formulae has been asserted previously, but as far as the authors know, the explicit forms have yet to be published. The formulae involve elliptic integrals, and are valid whenever fibre orientation was isotropic at some point in time. Finally, this paper presents the fast exact closure, a fast and in principle exact method for solving Jeffery’s equation, which does not require approximate closures nor the elliptic integral computation.

MSC:

76T20 Suspensions
76A05 Non-Newtonian fluids

References:

[1] VerWeyst, Intl Polym. Process. 14 pp 409– (1999) · doi:10.3139/217.1568
[2] DOI: 10.1122/1.2000970 · doi:10.1122/1.2000970
[3] Jack, Polym. Compos. 31 pp 1125– (2010)
[4] Hobson, Spherical and Ellipsoid Harmonic (1931)
[5] DOI: 10.1017/S0022112076003200 · Zbl 0352.76005 · doi:10.1017/S0022112076003200
[6] Han, J. Mater. Process. Technol. 124 pp 366– (2002) · doi:10.1016/S0924-0136(02)00255-8
[7] DOI: 10.1007/BF02198293 · Zbl 0827.65024 · doi:10.1007/BF02198293
[8] DOI: 10.1177/073168448400300201 · doi:10.1177/073168448400300201
[9] DOI: 10.1017/S002211206200124X · Zbl 0109.43605 · doi:10.1017/S002211206200124X
[10] Doi, J. Polym. Sci. 19 pp 229– (1981)
[11] Bird, Dynamics of Polymeric Liquids (1987)
[12] DOI: 10.1122/1.549748 · Zbl 0552.76009 · doi:10.1122/1.549748
[13] Bay, Plastics and Plastic Composites: Material Properties, Part Performance, and Process Simulation pp 445– (1991)
[14] DOI: 10.1122/1.550630 · doi:10.1122/1.550630
[15] DOI: 10.1122/1.1423312 · doi:10.1122/1.1423312
[16] DOI: 10.1007/BF00434187 · doi:10.1007/BF00434187
[17] DOI: 10.1002/pen.760301408 · doi:10.1002/pen.760301408
[18] DOI: 10.1122/1.550047 · Zbl 0693.76022 · doi:10.1122/1.550047
[19] DOI: 10.1122/1.549945 · doi:10.1122/1.549945
[20] DOI: 10.1016/0377-0257(95)01427-6 · doi:10.1016/0377-0257(95)01427-6
[21] Press, Numerical Recipes in Fortran 77: The Art of Scientific Computing (2003)
[22] DOI: 10.1515/crll.1876.81.62 · doi:10.1515/crll.1876.81.62
[23] DOI: 10.1016/j.jnnfm.2010.12.010 · Zbl 1282.76184 · doi:10.1016/j.jnnfm.2010.12.010
[24] DOI: 10.1016/j.compositesa.2010.02.010 · doi:10.1016/j.compositesa.2010.02.010
[25] DOI: 10.1016/0377-0257(88)80023-5 · doi:10.1016/0377-0257(88)80023-5
[26] Jeffery, Proc. R. Soc. Lond. A 102 pp 161– (1923) · JFM 49.0748.02 · doi:10.1098/rspa.1922.0078
[27] DOI: 10.1002/cjce.5450800611 · doi:10.1002/cjce.5450800611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.