×

Monic Chebyshev pseudospectral differentiation matrices for higher-order IVPs and BVPs: applications to certain types of real-life problems. (English) Zbl 1513.65230

Summary: We introduce new differentiation matrices based on the pseudospectral collocation method. Monic Chebyshev polynomials (MCPs) were used as trial functions in differentiation matrices (D-matrices). Those matrices have been used to approximate the solutions of higher-order ordinary differential equations (H-ODEs). Two techniques will be used in this work. The first technique is a direct approximation of the H-ODE. While the second technique depends on transforming the H-ODE into a system of lower order ODEs. We discuss the error analysis of these D-matrices in-depth. Also, the approximation and truncation error convergence have been presented to improve the error analysis. Some numerical test functions and examples are illustrated to show the constructed D-matrices’ efficiency and accuracy.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
33C47 Other special orthogonal polynomials and functions
65L20 Stability and convergence of numerical methods for ordinary differential equations
76M22 Spectral methods applied to problems in fluid mechanics

References:

[1] Abdelhakem, M.; Youssri, YH, Two spectral Legendre’s derivative algorithms for Lane-Emden, Bratu Equations, and singular perturbed problems, Appl Numer Math, 169, 243-255 (2021) · Zbl 1472.65090 · doi:10.1016/j.apnum.2021.07.006
[2] Abdelhakem, M.; Moussa, H.; Baleanu, D.; El-Kady, M., Shifted Chebyshev schemes for solving fractional optimal control problems, J Vib Control, 25, 15, 2143-2150 (2019) · doi:10.1177/1077546319852218
[3] Abdelhakem, M.; Ahmed, A.; El-kady, M., Spectral monic Chebyshev approximation for higher order differential equations, Math Sci Lett, 8, 2, 11-17 (2019) · doi:10.18576/msl/080201
[4] Abdelhakem, M.; Biomy, M.; Kandil, SA; Baleanu, D.; El-Kady, M., A numerical method based on Legendre differentiation matrices for higher order ODEs, Inf Sci Lett, 9, 3, 175-180 (2020) · doi:10.18576/isl/090303
[5] Abdelhakem, M.; Mahmoud, DR; Baleanu, D.; El-Kady, M., Shifted ultraspherical pseudo-Galerkin method for approximating the solutions of some types of ordinary fractional problems, Adv Differ Equ, 2021, 110 (2021) · Zbl 1494.65064 · doi:10.1186/s13662-021-03247-6
[6] Abdelhakem, M.; Alaa-Eldeen, T.; Baleanu, D.; Alshehri, MG; El-Kady, M., Approximating real-life BVPs via Chebyshev polynomials’ first derivative Pseudo-Galerkin method, Fractal Fract, 165, 2504-3110 (2021)
[7] Abdelhakem, M.; Abdelhamied, D.; Baleanu, D.; Alshehri, MG; El-Kady, M., Shifted Legendre fractional pseudospectral differentiation matrices for solving fractional differential problems, Fractals, 30, 1, 2240038 (2022) · Zbl 07490674 · doi:10.1142/S0218348X22400382
[8] Abd-Elhameed, W.; Youssri, Y., Numerical solutions for Volterra-Fredholm-Hammerstein integral equations via second kind Chebyshev quadrature collocation algorithm, Adv Math Sci Appl, 24, 129-141 (2014) · Zbl 1318.65082
[9] Abd-Elhameed, W.; Youssri, Y., Explicit shifted second-kind chebyshev spectral treatment for fractional riccati differential equation, CMES, 121, 3, 1029-1049 (2019) · doi:10.32604/cmes.2019.08378
[10] Abo-Eldahab, EM; Adel, R.; Mobarak, HM; Abdelhakem, M., The effects of magnetic field on boundary layer nano-fluid flow over stretching sheet, Appl Math Inf Sci, 15, 6, 731-741 (2021) · doi:10.18576/amis/150607
[11] Agarwal, P.; Attary, M.; Maghasedi, M.; Kumam, P., Solving higher-order boundary and initial value problems via Chebyshev-Spectral method: application in elastic foundation, Symmetry, 12, 987 (2020) · doi:10.3390/sym12060987
[12] Akram, G.; Beck, C., Hierarchical cascade model leading to 7-th order initial value problem, Appl Numer Math, 91, 89-97 (2015) · Zbl 1308.76195 · doi:10.1016/j.apnum.2014.10.009
[13] Akram, G.; Siddiqi, SS; Sufyan, M., Solution of ninth order boundary value problem using tenth degree spline, Math Sci Lett, 6, 2, 115-119 (2017) · doi:10.18576/msl/060202
[14] Alsaedi, A.; Hayat, T.; Qayyum, S.; Yaqoob, R., Eyring-Powell nanofluid flow with nonlinear mixed convection: entropy generation minimization, Comput Methods Prog Biol, 186, 105183 (2020) · doi:10.1016/j.cmpb.2019.105183
[15] Baltensperger, R.; Trummer, MR, Spectral differencing with a twist, SIAM J Sci Comput, 24, 1465-1487 (2003) · Zbl 1034.65016 · doi:10.1137/S1064827501388182
[16] Boukhouima, A.; Hattaf, K.; Lotfi, E.; Mahrouf, M.; Torres, DFM; Yousfi, N., Lyapunov functions for fractional-order systems in biology: methods and applications, Chaos Solitons Fractals, 140, 110224 (2020) · Zbl 1495.92007 · doi:10.1016/j.chaos.2020.110224
[17] Danish, GA; Imran, M.; Tahir, M.; Waqas, H.; Asjad, MI; Akgül, A.; Baleanu, D., Effects of non-linear thermal radiation and chemical reaction on time dependent flow of Williamson nanofluid with combine electrical MHD and activation energy, J Appl Comput Mech, 7, 2, 546-558 (2021)
[18] Doha, EH, The coefficients of differentiated expansions and derivatives of ultraspherical polynomials, Comput Math Appl, 21, 115-122 (1991) · Zbl 0723.33008 · doi:10.1016/0898-1221(91)90089-M
[19] Dong, L.; Alotaibi, A.; Mohiuddine, SA; Atluri, SN, Computational methods in engineering: a variety of primal and mixed methods, with global and local interpolations, for well-posed or ill-posed BCs, CMES, 99, 1-85 (2014) · Zbl 1356.65194
[20] Eid, MR; Mahny, K.; Dar, A.; Muhammad, T., Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species, Phys A Stat Mech Appl, 540, 123063 (2020) · Zbl 07457947 · doi:10.1016/j.physa.2019.123063
[21] Elahi, Z.; Akram, G.; Siddiqi, SS, Numerical solutions for solving special tenth order linear boundary value problems using Legendre Galerkin method, Math Sci Lett, 7, 1, 27-35 (2018) · doi:10.18576/msl/070105
[22] Elbarbary, EME; El-Sayed Salah, M., Higher order Pseudospectral differential matrices, Appl Numer Math, 55, 425-438 (2005) · Zbl 1086.65016 · doi:10.1016/j.apnum.2004.12.001
[23] El-Kady, M.; Moussa, H., Monic Chebyshev approximations for solving optimal control problem with Volterra integro differential equations, Gen Math Notes, 14, 23-36 (2013)
[24] El-Kady, M.; Attia, MA; Ragab, F., Ultraspherical integration method for solving beam bending boundary value problem, J Eng Appl, 1, 1, 37-43 (2014)
[25] Farman, M.; Ahmad, A.; Akgül, A.; Saleem, MU; Naeem, M.; Baleanu, D., Epidemiological analysis of the coronavirus disease outbreak with random effects, Comput Mater Contin, 67, 3, 3215-3227 (2021)
[26] Hassan, IHA-H, Differential transformation technique for solving higher-order initial value problems, Appl Math Comput, 154, 299-311 (2004) · Zbl 1054.65069
[27] Hussain, K.; Ismail, F.; Senu, N., Solving directly special fourth-order ordinary differential equations using Runge-Kutta type method, J Comput Appl Math, 306, 179-199 (2016) · Zbl 1382.65206 · doi:10.1016/j.cam.2016.04.002
[28] Karkeraa, H.; Katagia, NN; Kudenattib, RB, Analysis of general unified MHD boundary-layer flow of a viscous fluid: a novel numerical approach through wavelets, Math Comput Simul, 68, 135-154 (2020) · Zbl 1510.76212 · doi:10.1016/j.matcom.2019.08.004
[29] Kasi, KNSV; Kiranmayi, SVC, Numerical solution of fifth order boundary value problems by Petrov-Galerkin method with quartic B-splines as basis functions and quintic B-splines as weight functions, Int J Comput Appl, 161, 19-26 (2017)
[30] Khalil, M.; El-Kady, M.; Bakheet, H., Pseudospectral Chebyshev approximation for solving higher-order BVPs (2012), Berlin: LAP LAMBERT Academic Publishing, Berlin
[31] Lorenz E (1993) The butterfly effect. Appendix I, In the Essence of Chaos. Univ. Wash. Press, Seattle, pp 181-184 · Zbl 0835.58001
[32] Lu, Y.; Yin, Q.; Li, H.; Sun, H.; Yang, Y.; Hou, M., The LS-SVM algorithms for boundary value problems of high-order ordinary differential equations, Adv Differ Equ, 2019, 1, 195 (2019) · Zbl 1459.65116 · doi:10.1186/s13662-019-2131-3
[33] Mason, JC; Handscomb, DC, Chebyshev polynomials (2002), Boca Raton: CRC Press, Boca Raton · Zbl 1015.33001 · doi:10.1201/9781420036114
[34] Moore, SE; Okyere, E., Controlling the transmission dynamics of COVID-19, Commun Math Biol Neurosci, 2022, 6 (2022)
[35] Nayak, S.; Khan, A., Variable mesh polynomial spline discretization for solving higher order nonlinear singular boundary value problems, Differ Equ Dyn Syst, 28, 617-631 (2020) · Zbl 1448.65014 · doi:10.1007/s12591-020-00515-x
[36] Ogunrinde, RB; Ojo, OM, Application of differential transformation method to boundary value problems of order seven and eight, Am J Comput Math, 8, 3, 269-278 (2018) · doi:10.4236/ajcm.2018.83022
[37] Reddy, SM, Numerical solution of fifth order boundary value problems by Petrov-Galerkin method with Quintic B-splines as basis functions and Septic B-Splines as weight functions, Int J Eng Comput Sci, 5, 9, 17983-17988 (2016)
[38] Ribeiro WJM, de-Sousa JR (2018) Projectile motion: the ‘Coming and Going’ phenomenon. Lecture Notes. Sao Paulo, Brazil
[39] Rong, X.; Yang, L.; Chu, H.; Fan, M., Effect of delay in diagnosis on transmission of COVID-19, Math Biosci Eng, 17, 3, 2725-2740 (2020) · Zbl 1470.92190 · doi:10.3934/mbe.2020149
[40] Shen, J.; Tang, T.; Wang, LL, Spectral methods: algorithms, analysis and applications (2011), Berlin: Springer, Berlin · Zbl 1227.65117 · doi:10.1007/978-3-540-71041-7
[41] Sohaib, M.; Haq, S.; Mukhtar, S.; Khan, I., Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method, Results Phys, 8, 1204-1208 (2018) · doi:10.1016/j.rinp.2018.01.065
[42] Subhashini, SV; Sindhu, SL; Vajravelu, K., Stability analysis of a mixed convection flow over a moving plate with non-uniform thickness, Arch Appl Mech, 90, 1497-1507 (2020) · doi:10.1007/s00419-020-01680-9
[43] Youssri, YH; Abd-Elhameed, WM; Abdelhakem, M., A robust spectral treatment of a class of initial value problems using modified Chebyshev polynomials, Math Methods Appl Sci, 44, 11, 9224-9236 (2021) · Zbl 1512.65171 · doi:10.1002/mma.7347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.