×

A two-grid discretization scheme for the Steklov eigenvalue problem. (English) Zbl 1220.65160

The authors discuss a two-grid discretization scheme for the Steklov eigenvalue problem. The solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on a fine grid. Numerical experiments are performed to confirm the theoretical results.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Alonso, A., Russo, A.D.: Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods. J. Comput. Appl. Math. 223, 177–197 (2009) · Zbl 1156.65094 · doi:10.1016/j.cam.2008.01.008
[2] Andreev, A.B., Todorov, T.D.: Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24, 309–322 (2004) · Zbl 1069.65120 · doi:10.1093/imanum/24.2.309
[3] Armentano, M.G.: The effect of reduced integration in the Steklov eigenvalue problem. Math. Mod. Numer. Anal. 38, 27–36 (2004) · Zbl 1077.65115 · doi:10.1051/m2an:2004002
[4] Armentano, M.G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58, 93–601 (2008) · Zbl 1140.65078
[5] Babuska, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989) · Zbl 0675.65108
[6] Babuska, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1). Handbook of Numerical Analysis, vol. 2, pp. 640–787. Elsevier Science Publishers, North-Holand (1991)
[7] Bergamann, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematics Physics. Academic Press, San Diego (1953)
[8] Bermudez, A., Rodriguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87, 201–227 (2000) · Zbl 0998.76046 · doi:10.1007/s002110000175
[9] Bramble, J.H., Osborn, J.E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. In: Aziz, A.K. (ed.) Math. Foundations of the Finite Element Method with Applications to PDE, pp. 387–408. Academic Press, San Diego (1972) · Zbl 0264.35055
[10] Chen, H.J., Liu, F., Zhou, A.H.: A two-scale higher-order finite element discretization for Schrödinger Equation. J. Comput. Math. 27, 315–337 (2009) · Zbl 1212.65432
[11] Chien, C.S., Jeng, B.W.: A two-grid finite element discretization scheme for nonlinear eigenvalue problems. Comput. Methods 1951–1955 (2006)
[12] Chien, C.S., Jeng, B.W.: A two-grid finite element discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27, 1287–1304 (2006) · Zbl 1095.65100 · doi:10.1137/030602447
[13] Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1). Handbook of Numerical Analysis, vol. 2, pp. 21–343. Elsevier Science Publishers, North-Holand (1991)
[14] Conca, C., Planchard, J., Vanninathanm, M.: Fluid and Periodic Structures. Wiley, New York (1995)
[15] Gong, X.G., Shen, L.H., Zhang, D., Zhou, A.H.: Finite element approximations for Schrödinger Equations with applications to electronic structure computations. J. Comput. Math. 26, 310–323 (2008) · Zbl 1174.65047
[16] He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the stokes problem. Numer. Math. 109, 415–434 (2008) · Zbl 1145.65097 · doi:10.1007/s00211-008-0141-2
[17] Huang, J., Lü, T.: The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems. J. Comput. Math. 22(5), 719–726 (2004) · Zbl 1069.65123
[18] Li, M.X., Lin, Q., Zhang, S.: Extrapolation and superconvergence of the Steklov eigenvalue problem. Adv. Comput. Math. (2009). doi: 10.1007/s10444-009-9118-7 · Zbl 1213.65141
[19] Tang, W., Guan, Z., Han, H.: Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation. J. Comput. Math. 2, 165–178 (1998) · Zbl 0977.65100
[20] Wang, C., Huang, Z.P., Li, L.K.: Two-grid nonconforming finite element method for second order elliptic problems. Appl. Math. Comput. 177, 211–219 (2006) · Zbl 1101.65109 · doi:10.1016/j.amc.2005.10.049
[21] Xu, J.C.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992) · Zbl 0756.65050 · doi:10.1137/0729020
[22] Xu, J.C.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996) · Zbl 0860.65119 · doi:10.1137/S0036142992232949
[23] Xu, J.C., Zhou, A.H.: A two-grid discretization scheme for eigenvalue problem. Math. Comput. 70, 17–25 (2001) · Zbl 0959.65119 · doi:10.1090/S0025-5718-99-01180-1
[24] Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18, 80–200 (2002) · Zbl 1015.65060
[25] Yang, Y.D., Fan, X.Y.: Generalized Rayleigh quotient and finite element two-grid discretization schemes. Sci. China Ser. A 52, 1955–1972 (2009) · Zbl 1188.65151 · doi:10.1007/s11425-009-0016-8
[26] Yang, Y.D., Li, Q., Li, S.R.: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59, 2388–2401 (2009) · Zbl 1190.65168 · doi:10.1016/j.apnum.2009.04.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.