×

Well-posedness of the stationary and slowly traveling wave problems for the free boundary incompressible Navier-Stokes equations. (English) Zbl 07919642

Summary: We establish that solitary stationary waves in three dimensional viscous incompressible fluids are a general phenomenon and that every such solution is a vanishing wave-speed limit along a one parameter family of traveling waves. The setting of our result is a horizontally-infinite fluid of finite depth with a flat, rigid bottom and a free boundary top. A constant gravitational field acts normal to bottom, and the free boundary experiences surface tension. In addition to these gravity-capillary effects, we allow for applied stress tensors to act on the free surface region and applied forces to act in the bulk. These are posited to be in either stationary or traveling form.
In the absence of any applied stress or force, the system reverts to a quiescent equilibrium; in contrast, when such sources of stress or force are present, stationary or traveling waves are generated. We develop a small data well-posedness theory for this problem by proving that there exists a neighborhood of the origin in stress, force, and wave speed data-space in which we obtain the existence and uniqueness of stationary and traveling wave solutions that depend continuously on the stress-force data, wave speed, and other physical parameters. To the best of our knowledge, this is the first proof of well-posedness of the solitary stationary wave problem and the first continuous embedding of the stationary wave problem into the traveling wave problem. Our techniques are based on vector-valued harmonic analysis, a novel method of indirect symbol calculus, and the implicit function theorem.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
76D33 Waves for incompressible viscous fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35R35 Free boundary problems for PDEs
35S05 Pseudodifferential operators as generalizations of partial differential operators
35C07 Traveling wave solutions
35C08 Soliton solutions
68W30 Symbolic computation and algebraic computation
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Abe, T.; Shibata, Y., On a resolvent estimate of the Stokes equation on an infinite layer, J. Math. Soc. Jpn., 55, 2, 469-497, 2003 · Zbl 1048.35052
[2] Abe, T.; Shibata, Y., On a resolvent estimate of the Stokes equation on an infinite layer. II. \( \lambda = 0\) case, J. Math. Fluid Mech., 5, 3, 245-274, 2003 · Zbl 1162.76328
[3] Abe, T.; Yamazaki, M., On a stationary problem of the Stokes equation in an infinite layer in Sobolev and Besov spaces, J. Math. Fluid Mech., 12, 1, 61-100, 2010 · Zbl 1261.35117
[4] Abels, H., Reduced and generalized Stokes resolvent equations in asymptotically flat layers. I. Unique solvability, J. Math. Fluid Mech., 7, 2, 201-222, 2005 · Zbl 1070.35020
[5] Abels, H., Reduced and generalized Stokes resolvent equations in asymptotically flat layers. II. \( H_\infty \)-calculus, J. Math. Fluid Mech., 7, 2, 223-260, 2005 · Zbl 1083.35085
[6] Abels, H., The initial-value problem for the Navier-Stokes equations with a free surface in \(L^q\)-Sobolev spaces, Adv. Differ. Equ., 10, 1, 45-64, 2005 · Zbl 1105.35072
[7] Abels, H., Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions, Math. Nachr., 279, 4, 351-367, 2006 · Zbl 1117.35060
[8] Abels, H.; Wiegner, M., Resolvent estimates for the Stokes operator on an infinite layer, Differ. Integral Equ., 18, 10, 1081-1110, 2005 · Zbl 1212.35343
[9] Abergel, F., A geometric approach to the study of stationary free surface flows for viscous liquids, Proc. R. Soc. Edinb., Sect. A, 123, 2, 209-229, 1993 · Zbl 0785.76016
[10] Abergel, F.; Rouy, E., Interfaces stationnaires pour les équations de Navier-Stokes, 1995, INRIA, PhD thesis
[11] Abraham, R.; Marsden, J. E.; Ratiu, T., Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences., vol. 75, 1988, Springer-Verlag: Springer-Verlag New York · Zbl 0875.58002
[12] Allain, G., Small-time existence for the Navier-Stokes equations with a free surface, Appl. Math. Optim., 16, 1, 37-50, 1987 · Zbl 0655.76021
[13] Amann, H., Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186, 5-56, 1997 · Zbl 0880.42007
[14] Bae, H., Solvability of the free boundary value problem of the Navier-Stokes equations, Discrete Contin. Dyn. Syst., 29, 3, 769-801, 2011 · Zbl 1222.35215
[15] Bahouri, H.; Chemin, J.-Y.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343, 2011, Springer: Springer Heidelberg · Zbl 1227.35004
[16] Beale, J. T., The initial value problem for the Navier-Stokes equations with a free surface, Commun. Pure Appl. Math., 34, 3, 359-392, 1981 · Zbl 0464.76028
[17] Beale, J. T., Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84, 4, 307-352, 1983/84 · Zbl 0545.76029
[18] Beale, J. T.; Nishida, T., Large-time behavior of viscous surface waves, (Recent Topics in Nonlinear PDE, II. Recent Topics in Nonlinear PDE, II, Sendai, 1984. Recent Topics in Nonlinear PDE, II. Recent Topics in Nonlinear PDE, II, Sendai, 1984, North-Holland Math. Stud., vol. 128, 1985, North-Holland: North-Holland Amsterdam), 1-14 · Zbl 0642.76048
[19] Bemelmans, J., Gleichgewichtsfiguren zäher Flüssigkeiten mit Oberflächenspannung, Analysis, 1, 4, 241-282, 1981 · Zbl 0561.76042
[20] Bemelmans, J., Liquid drops in a viscous fluid under the influence of gravity and surface tension, Manuscr. Math., 36, 1, 105-123, 1981/82 · Zbl 0478.76118
[21] Bemelmans, J., On a free boundary problem for the stationary Navier-Stokes equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 4, 6, 517-547, 1987 · Zbl 0637.76027
[22] Benjamin, T. B., Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2, 554-574, 1957 · Zbl 0078.18003
[23] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, 1976, Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0344.46071
[24] Blasco, O.; van Neerven, J., Spaces of operator-valued functions measurable with respect to the strong operator topology, (Vector Measures, Integration and Related Topics. Vector Measures, Integration and Related Topics, Oper. Theory Adv. Appl., vol. 201, 2010, Birkhäuser Verlag: Birkhäuser Verlag Basel), 65-78 · Zbl 1259.46033
[25] Bourgain, J., Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21, 2, 163-168, 1983 · Zbl 0533.46008
[26] Bu, S.; Kim, J.-M., Operator-valued Fourier multiplier theorems on Triebel spaces, Acta Math. Sci. Ser. B Engl. Ed., 25, 4, 599-609, 2005 · Zbl 1129.42335
[27] Burkholder, D. L., A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab., 9, 6, 997-1011, 1981 · Zbl 0474.60036
[28] Castro, A.; Córdoba, D.; Fefferman, C.; Gancedo, F.; Gómez-Serrano, J., Finite time singularities for the free boundary incompressible Euler equations, Ann. Math. (2), 178, 3, 1061-1134, 2013 · Zbl 1291.35199
[29] Cho, Y.; Diorio, J. D.; Akylas, T. R.; Duncan, J. H., Resonantly forced gravity-capillary lumps on deep water. Part 2. Theoretical model, J. Math. Fluid Mech., 672, 288-306, 2011 · Zbl 1225.76059
[30] Constantin, P.; Foias, C., Navier-Stokes Equations, Chicago Lectures in Mathematics, 1988, University of Chicago Press: University of Chicago Press Chicago, IL · Zbl 0687.35071
[31] Coutand, D.; Shkoller, S., On the splash singularity for the free-surface of a Navier-Stokes fluid, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 36, 2, 475-503, 2019 · Zbl 1442.76042
[32] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340, 1971 · Zbl 0219.46015
[33] Dinculeanu, N., Vector Measures, 1967, Pergamon Press: Pergamon Press Oxford-New York-Toronto, Ont., VEB Deutscher Verlag der Wissenschaften, Berlin
[34] Diorio, J. D.; Cho, Y.; Duncan, J. H.; Akylas, T. R., Resonantly forced gravity-capillary lumps on deep water. Part 1. Experiments, J. Math. Fluid Mech., 672, 268-287, 2011 · Zbl 1225.76060
[35] Ehrnström, M.; Walsh, S.; Zeng, C., Smooth stationary water waves with exponentially localized vorticity, J. Eur. Math. Soc., 25, 3, 1045-1090, 2023 · Zbl 1515.35193
[36] Fefferman, C.; Stein, E. M., Some maximal inequalities, Am. J. Math., 93, 107-115, 1971 · Zbl 0222.26019
[37] Gellrich, R. S., Free boundary value problems for the stationary Navier-Stokes equations in domains with noncompact boundaries, Z. Anal. Anwend., 12, 3, 425-455, 1993 · Zbl 0778.76019
[38] Girardi, M.; Weis, L., Operator-valued Fourier multiplier theorems on Besov spaces, Math. Nachr., 251, 34-51, 2003 · Zbl 1077.46024
[39] Girardi, M.; Weis, L., Operator-valued Fourier multiplier theorems on \(L_p(X)\) and geometry of Banach spaces, J. Funct. Anal., 204, 2, 320-354, 2003 · Zbl 1062.42005
[40] Girardi, M.; Weis, L., Vector-valued extensions of some classical theorems in harmonic analysis, (Analysis and Applications—ISAAC 2001. Analysis and Applications—ISAAC 2001, Berlin. Analysis and Applications—ISAAC 2001. Analysis and Applications—ISAAC 2001, Berlin, Int. Soc. Anal. Appl. Comput., vol. 10, 2003, Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 171-185 · Zbl 1046.42004
[41] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, 2014, Springer: Springer New York · Zbl 1304.42001
[42] Grafakos, L., Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2014, Springer: Springer New York · Zbl 1304.42002
[43] Groves, M. D., Steady water waves, J. Nonlinear Math. Phys., 11, 4, 435-460, 2004 · Zbl 1064.35144
[44] Guo, Y.; Tice, I., Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, 6, 6, 1429-1533, 2013 · Zbl 1292.35206
[45] Guo, Y.; Tice, I., Local well-posedness of the viscous surface wave problem without surface tension, Anal. PDE, 6, 2, 287-369, 2013 · Zbl 1273.35209
[46] Hajłasz, P.; Kałamajska, A., Polynomial asymptotics and approximation of Sobolev functions, Stud. Math., 113, 1, 55-64, 1995 · Zbl 0823.46036
[47] Haller, R.; Heck, H.; Noll, A., Mikhlin’s theorem for operator-valued Fourier multipliers in n variables, Math. Nachr., 244, 110-130, 2002 · Zbl 1054.47013
[48] Haziot, S. V.; Hur, V. M.; Strauss, W. A.; Toland, J. F.; Wahlén, E.; Walsh, S.; Wheeler, M. H., Traveling water waves—the ebb and flow of two centuries, Q. Appl. Math., 80, 2, 317-401, 2022 · Zbl 1490.35320
[49] Hieber, M., Operator valued Fourier multipliers, (Topics in Nonlinear Analysis. Topics in Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., vol. 35, 1999, Birkhäuser: Birkhäuser Basel), 363-380 · Zbl 0919.47021
[50] Hille, E.; Phillips, R. S., Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. XXXI, 1974, American Mathematical Society: American Mathematical Society Providence, R.I., third printing of the revised edition of 1957 · Zbl 0078.10004
[51] Hytönen, T.; van Neerven, J.; Veraar, M.; Weis, L., Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, vol. 63, 2016, Springer: Springer Cham) · Zbl 1366.46001
[52] Inci, H.; Kappeler, T.; Topalov, P., On the regularity of the composition of diffeomorphisms, Mem. Am. Math. Soc., 226, 1062, 2013, vi+60 · Zbl 1293.58004
[53] Ja Jin, B., Free boundary problem of steady incompressible flow with contact angle \(\frac{ \pi}{ 2} \), J. Differ. Equ., 217, 1, 1-25, 2005 · Zbl 1088.35044
[54] Jean, M., Free surface of the steady flow of a Newtonian fluid in a finite channel, Arch. Ration. Mech. Anal., 74, 3, 197-217, 1980 · Zbl 0451.76038
[55] Koganemaru, J.; Tice, I., Traveling wave solutions to the inclined or periodic free boundary incompressible Navier-Stokes equations, J. Funct. Anal., 285, 7, Article 110057 pp., 2024 · Zbl 1517.35154
[56] Lancien, F.; Lancien, G.; Le Merdy, C., A joint functional calculus for sectorial operators with commuting resolvents, Proc. Lond. Math. Soc. (3), 77, 2, 387-414, 1998 · Zbl 0904.47015
[57] Leoni, G., A First Course in Sobolev Spaces, Graduate Studies in Mathematics, vol. 181, 2017, American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1382.46001
[58] Leoni, G.; Tice, I., Traveling wave solutions to the free boundary incompressible Navier-Stokes equations, Commun. Pure Appl. Math., 2022
[59] Masnadi, N.; Duncan, J. H., The generation of gravity-capillary solitary waves by a pressure source moving at a trans-critical speed, J. Fluid Mech., 810, 448-474, 2017
[60] Matthies, K.; Sewell, J.; Wheeler, M. H., Solitary solutions to the steady Euler equations with piecewise constant vorticity in a channel, J. Differ. Equ., 400, 376-422, 2024 · Zbl 1541.76019
[61] McConnell, T. R., On Fourier multiplier transformations of Banach-valued functions, Trans. Am. Math. Soc., 285, 2, 739-757, 1984 · Zbl 0566.42009
[62] Nazarov, S.; Pileckas, K., On noncompact free boundary problems for the plane stationary Navier-Stokes equations, J. Reine Angew. Math., 438, 103-141, 1993 · Zbl 0767.35111
[63] Nguyen, H. Q.; Tice, I., Traveling wave solutions to the one-phase Muskat problem: existence and stability, Arch. Ration. Mech. Anal., 248, 1, Article 5 pp., 2024, 58 · Zbl 1532.35387
[64] Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, vol. 6, 2001, New York University, Courant Institute of Mathematical Sciences: New York University, Courant Institute of Mathematical Sciences New York, American Mathematical Society, Providence, RI, Chapter 6 by E. Zehnder, Notes by R. A. Artino, revised reprint of the 1974 original · Zbl 0992.47023
[65] Park, B.; Cho, Y., Experimental observation of gravity-capillary solitary waves generated by a moving air suction, J. Math. Fluid Mech., 808, 168-188, 2016 · Zbl 1383.76011
[66] Park, B.; Cho, Y., Two-dimensional gravity-capillary solitary waves on deep water: generation and transverse instability, J. Math. Fluid Mech., 834, 92-124, 2018
[67] Pileckas, K.; Socolowsky, J., Analysis of two linearized problems modeling viscous two-layer flows, Math. Nachr., 245, 129-166, 2002 · Zbl 1014.35077
[68] Pileckas, K.; Socolowsky, J., Viscous two-fluid flows in perturbed unbounded domains, Math. Nachr., 278, 5, 589-623, 2005 · Zbl 1067.35065
[69] Pileckas, K.; Solonnikov, V. A., Viscous incompressible free-surface flow down an inclined perturbed plane, Ann. Univ. Ferrara, Sez. 7: Sci. Mat., 60, 1, 225-244, 2014 · Zbl 1302.35298
[70] Pileckas, K. I., On plane motion of a viscous incompressible capillary liquid with a noncompact free boundary, (1989. XVIIIth Symposium on Advanced Problems and Methods in Fluid Mechanics, vol. 41, 1990), 329-342 · Zbl 0717.76040
[71] Piletskas, K., Gliding of a flat plate of infinite span over the surface of a heavy viscous incompressible fluid of finite depth, Differ. Urav. Primen., 34, 60-74, 1983 · Zbl 0564.76052
[72] Piletskas, K., A remark on the paper: “Gliding of a flat plate of infinite span over the surface of a heavy viscous incompressible fluid of finite depth”, Differ. Urav. Primen., 36, 55-60, 1984, 139 · Zbl 0588.76046
[73] Piletskas, K. I., Solvability of a problem on the planar motion of a viscous incompressible fluid with a free noncompact boundary, Zap. Nauč. Semin. LOMI, 110, 174-179, 245, 1981, Boundary value problems of mathematical physics and related questions in the theory of functions, 13 · Zbl 0508.76048
[74] Piletskas, K. I., On the problem of the flow of a heavy viscous incompressible fluid with a free noncompact boundary, Litov. Mat. Sb., 28, 2, 315-333, 1988 · Zbl 0657.76030
[75] Prüss, J.; Simonett, G., Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, vol. 105, 2016, Birkhäuser/Springer: Birkhäuser/Springer Cham · Zbl 1435.35004
[76] Puhnačev, V. V., The plane stationary problem with a free boundary for the Navier-Stokes equations, J. Appl. Mech. Tech. Phys., 13, 3, 340-349, 1972
[77] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. I. Functional Analysis, 1972, Academic Press: Academic Press New York-London · Zbl 0242.46001
[78] Robinson, J. C., An introduction to dissipative parabolic PDEs and the theory of global attractors, (Infinite-Dimensional Dynamical Systems. Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, 2001, Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0980.35001
[79] Schwartz, J., A remark on inequalities of Calderon-Zygmund type for vector-valued functions, Commun. Pure Appl. Math., 14, 785-799, 1961 · Zbl 0106.08104
[80] Shibata, Y.; Shimizu, S., Free boundary problems for a viscous incompressible fluid, (Kyoto Conference on the Navier-Stokes Equations and Their Applications. Kyoto Conference on the Navier-Stokes Equations and Their Applications, RIMS Kôkyûroku Bessatsu, vol. B1, 2007, Res. Inst. Math. Sci. (RIMS): Res. Inst. Math. Sci. (RIMS) Kyoto), 356-358 · Zbl 1122.35100
[81] Shibata, Y.; Shimizu, S., Report on a local in time solvability of free surface problems for the Navier-Stokes equations with surface tension, Appl. Anal., 90, 1, 201-214, 2011 · Zbl 1209.35158
[82] Socolescu, D., Existenz- und Eindeutigkeitsbeweis für ein freies Randwertproblem für die stationären Navier-Stokesschen Bewegungsgleichungen, Arch. Ration. Mech. Anal., 73, 3, 191-242, 1980 · Zbl 0442.76028
[83] Socolowsky, J., The solvability of a free boundary problem for the stationary Navier-Stokes equations with a dynamic contact line, Nonlinear Anal., 21, 10, 763-784, 1993 · Zbl 0853.35134
[84] Socolowsky, J., On a two-fluid inclined film flow with evaporation, Math. Model. Anal., 18, 1, 22-31, 2013 · Zbl 1264.35287
[85] Solonnikov, V. A., Solvability of the problem of the plane motion of a heavy viscous incompressible capillary fluid that partially fills a certain vessel, Izv. Akad. Nauk SSSR, Ser. Mat., 43, 1, 203-236, 1979, p. 239
[86] Solonnikov, V. A., Solvability of a three-dimensional boundary value problem with a free surface for the stationary Navier-Stokes system, (Partial Differential Equations. Partial Differential Equations, Warsaw, 1978. Partial Differential Equations. Partial Differential Equations, Warsaw, 1978, Banach Center Publ., vol. 10, 1983, PWN: PWN Warsaw), 361-403 · Zbl 0575.35071
[87] Solonnikov, V. A., Solvability of two stationary free boundary problems for the Navier-Stokes equations, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1, 2, 283-342, 1998 · Zbl 0964.35119
[88] Solonnikov, V. A., Stationary free boundary problems for the Navier-Stokes equations, (Advanced Topics in Theoretical Fluid Mechanics. Advanced Topics in Theoretical Fluid Mechanics, Paseky nad Jizerou, 1997. Advanced Topics in Theoretical Fluid Mechanics. Advanced Topics in Theoretical Fluid Mechanics, Paseky nad Jizerou, 1997, Pitman Res. Notes Math. Ser., vol. 392, 1998, Longman: Longman Harlow), 147-212 · Zbl 0941.35071
[89] Solonnikov, V. A.; Denisova, I. V., Classical well-posedness of free boundary problems in viscous incompressible fluid mechanics, (Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, Springer: Springer Cham), 1135-1220
[90] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, 1970, Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 0207.13501
[91] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, 1993, Princeton University Press: Princeton University Press Princeton, NJ, with the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III · Zbl 0821.42001
[92] Stevenson, N.; Tice, I., Well-posedness of the traveling wave problem for the free boundary compressible Navier-Stokes equations, 2023, Preprint
[93] Stevenson, N.; Tice, I., Traveling wave solutions to the multilayer free boundary incompressible Navier-Stokes equations, SIAM J. Math. Anal., 53, 6, 6370-6423, 2021 · Zbl 1479.35634
[94] Strauss, W. A., Steady water waves, Bull. Am. Math. Soc. (N.S.), 47, 4, 671-694, 2010 · Zbl 1426.76078
[95] Tani, A., Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface, Arch. Ration. Mech. Anal., 133, 4, 299-331, 1996 · Zbl 0857.76026
[96] Taylor, M. E., Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics, vol. 100, 1991, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0746.35062
[97] Toland, J. F., Stokes waves, Topol. Methods Nonlinear Anal., 7, 1, 1-48, 1996 · Zbl 0897.35067
[98] Wu, L., Well-posedness and decay of the viscous surface wave, SIAM J. Math. Anal., 46, 3, 2084-2135, 2014 · Zbl 1304.35512
[99] Zadrzyńska, E., Free boundary problems for nonstationary Navier-Stokes equations, Diss. Math., 424, 135, 2004 · Zbl 1062.35077
[100] Zimmermann, F., On vector-valued Fourier multiplier theorems, Stud. Math., 93, 3, 201-222, 1989 · Zbl 0686.42008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.