×

Sensor array calibration method in presence of gain/phase uncertainties and position perturbations using the spatial- and time-domain information of the auxiliary sources. (English) Zbl 1349.94079

Summary: This paper deals with the problem of active calibration under the existence of sensor gain/phase uncertainties and position perturbations. Unlike many existing eigenstructure-based (also called subspace-based) calibration methods which using the spatial-domain (i.e., angle) information of the auxiliary sources only, our proposed approach enables exploitation of both the spatial- and time-domain knowledge of the sources, and therefore yields better performance than the eigenstructure-based calibration technology. For the purpose of incorporating the time-domain knowledge of the sources into the error calibration, the maximum likelihood criterion is selected as the optimization principle, and a concentrated alternating iteration procedure (called algorithm II) is developed, which has rapid convergence rate and robustness. As a byproduct of this paper, we also provide an eigenstructure-based calibration approach (termed algorithm I), which alternatively minimizes the weighted signal subspace fitting cost function and weighted noise subspace fitting criterion to update the estimates for sensor position perturbations and gain/phase errors in each iteration, respectively. Similar to some previous subspace-based calibration algorithms in the literature, algorithm I is also asymptotically efficient but is more computationally convenient, and can be introduced as benchmark to be compared to algorithm II. Additionally, the Cramér-Rao bound (CRB) expressions for the sensor gain/phase errors and position perturbations estimates are presented for two situations: (a) the time-domain waveform information of the sources is unavailable, and (b) the time-domain waveform information of the sources is taken as prior knowledge into account. The CRBs for the two cases are also quantitatively compared, and the resulting conclusion demonstrates that by combining the time-domain waveform information of the sources into the calibration algorithm, a significant performance improvement can be achieved. The simulation experiments are conducted to corroborate the advantages of the proposed algorithms as well as the theoretical analysis in this paper.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Aktas, M., & Tuncer, T. E. (2010). Iterative HOS-SOS (IHOSS) algorithm for direction-of-arrival estimation and sensor localization. IEEE Transactions on Signal Processing, 58(12), 6181-6194. · Zbl 1392.94064 · doi:10.1109/TSP.2010.2071868
[2] Bao, Q., Ko, C. C., & Zhi, W. (2005). DOA estimation under unknown mutual coupling and multipath. IEEE Transactions on Aerospace and Electronic Systems, 41(2), 565-573. · doi:10.1109/TAES.2005.1468748
[3] Cheng, Q., Hua, Y. B., & Stoica, P. (2000). Asymptotic performance of optimal gain-and-phase estimators of sensor arrays. IEEE Transactions on Signal Processing, 48(12), 3587-3590. · Zbl 1007.93069 · doi:10.1109/78.887058
[4] Ferréol, A., Larzabal, P., & Viberg, M. (2006). On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: Case of MUSIC. IEEE Transactions on Signal Processing, 54(3), 907-920. · Zbl 1373.94586 · doi:10.1109/TSP.2005.861798
[5] Ferréol, A., Larzabal, P., & Viberg, M. (2008). Performance prediction of maximum-likelihood direction-of-arrival estimation in the presence of modeling errors. IEEE Transactions on Signal Processing, 56(10), 4785-4793. · Zbl 1390.94180 · doi:10.1109/TSP.2008.921794
[6] Ferréol, A., Larzabal, P., & Viberg, M. (2010). Statistical analysis of the MUSIC algorithm in the presence of modeling errors, taking into account the resolution probability. IEEE Transactions on Signal Processing, 58(8), 4156-4166. · Zbl 1392.94207 · doi:10.1109/TSP.2010.2049263
[7] Flanagan, B. P., & Bell, K. L. (2001). Array self-calibration with large sensor position errors. Signal Processing, 81(10), 2201-2214. · doi:10.1016/S0165-1684(01)00121-9
[8] Jansson, M., Götansson, B., & Ottersten, B. (1999). A subspace method for direction of arrival estimation of uncorrelated emitter signals. IEEE Transactions on Signal Processing, 47(4), 945-956. · doi:10.1109/78.752593
[9] Jia, Y. K., Bao, Z., & Wu, H. (1996). A new calibration technique with signal sources for position, gain and phase uncertainty of sensor array. Acta Electronica Sinica, 24(3), 47-52.
[10] Jiang, J. J., Duan, F. J., Chen, J., Chao, Z., Chang, Z. J., & Hua, X. N. (2013). Two new estimation algorithms for sensor gain and phase errors based on different data models. IEEE Sensors Journal, 13(5), 1921-1930. · Zbl 1267.35109 · doi:10.1109/JSEN.2012.2229266
[11] Leshem, A., & Veen, A. J. (1999). Direction-of-arrival estimation for constant modulus signals. IEEE Transactions on Signal Processing, 47(11), 3125-3129. · Zbl 1064.94518 · doi:10.1109/78.796446
[12] Li, J., Halder, B., Stoica, P., & Viberg, M. (1995). Computationally efficient angle estimation for signals with known waveforms. IEEE Transactions on Signal Processing, 43(9), 2154-2163. · doi:10.1109/78.414778
[13] Li, Y. M., & Er, M. H. (2006). Theoretical analyses of gain and phase error calibration with optimal implementation for linear equispaced array. IEEE Transactions on Signal Processing, 54(2), 712-723. · Zbl 1373.94646 · doi:10.1109/TSP.2005.861892
[14] Liu, A. F., Liao, G. S., Zeng, C., Yang, Z. W., & Xu, Q. (2011). An eigenstructure method for estimating DOA and sensor gain-phase errors. IEEE Transactions on Signal Processing, 59(12), 5944-5956. · Zbl 1393.94585 · doi:10.1109/TSP.2011.2165064
[15] Ng, B.C., Ser, W. (1992). Array shape calibration using sources in known locations. In: Proceedings of the ICCS/ISITA communications on the Moveapos. Singapore: IEEE Press, 1992, 2: 836-840.
[16] Ng, B. C., & Nehorai, A. (1995). Active array sensor localization. Signal Processing, 44(3), 309-327. · Zbl 0875.94031 · doi:10.1016/0165-1684(95)00032-9
[17] Ottersten, B., Viberg, M., Stoica, P., Nehorai, A. (1993). Exact and large sample ML techniques for parameter estimation and detection in array processing. In: Haykin, Litva and Shepherd (Eds.) Radar array processing (pp. 99-151). Berlin: Springer.
[18] Park, H. Y., Lee, C. Y., Kang, H. G., & Youn, D. H. (2004). Generalization of subspace-based array shape estimations. IEEE Journal of Oceanic Engineering, 29(3), 847-856. · doi:10.1109/JOE.2004.833373
[19] See, C. M. S., & Poth, B. K. (1999). Parametric sensor array calibration using measured steering vectors of uncertain locations. IEEE Transactions on Signal Processing, 47(4), 1133-1137. · doi:10.1109/78.752611
[20] See, C. M. S., & Gershman, A. B. (2004). Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays. IEEE Transactions on Signal Processing, 52(2), 329-338. · Zbl 1369.94280 · doi:10.1109/TSP.2003.821101
[21] Soon, V. C., Tong, L., Huang, Y. F., & Liu, R. (1994). A subspace method for estimating sensor gains and phases. IEEE Transactions on Signal Processing, 42(4), 973-976. · doi:10.1109/78.285666
[22] Stoica, P., & Larsson, E. G. (2001). Comments on “Linearization method for finding Cramér-Rao bounds in signal processing”. IEEE Transactions on Signal Processing, 49(12), 3168-3169. · doi:10.1109/78.969523
[23] Viberg, M., & Swindlehurst, A. L. (1994). A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Transactions on Signal Processing, 42(12), 3495-3507. · doi:10.1109/78.340783
[24] Vu, D. T., Renaux, A., Boyer, R., & Marcos, S. (2013). A cramér rao bounds based analysis of 3D antenna array geometries made from ULA branches. Multidimensional Systems and Signal Processing, 24, 121-155. · Zbl 1272.93116 · doi:10.1007/s11045-011-0160-5
[25] Wan, S., Chung, P. J., & Mulgrew, B. (2012). Maximum likelihood array calibration using particle swarm optimization. IET Signal Processing, 6(5), 456-465. · doi:10.1049/iet-spr.2011.0133
[26] Wang, C. C., Cadzow, J. A. (1991). Direction-finding with sensor gain, phase and location uncertainty. In: Proceedings of the international conference on acoustics, speech and signal processing. Toronto, Ontario: IEEE Press, 1991, vol. 2, pp. 1429-1432.
[27] Wang, D., & Wu, Y. (2008). Self-calibration algorithm for DOA estimation in presence of sensor amplitude, phase uncertainties and sensor position errors. Chinese Journal of Data Acquisition & Processing, 23(2), 176-181.
[28] Wang, D., & Wu, Y. (2010). Array errors active calibration algorithm and its improvement. Science China Information Sciences, 53(5), 1016-1033. · Zbl 1497.78007 · doi:10.1007/s11432-010-0089-6
[29] Wang, D. (2013). Sensor array calibration in presence of mutual coupling and gain/phase errors by combining the spatial-domain and time-domain waveform information of the calibration sources. Circuits, Systems, and Signal Processing, 32(3), 1257-1292. · doi:10.1007/s00034-012-9499-6
[30] Weiss, A. J., & Friedlander, B. (1990). Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Circuits Systems, Signal Processing, 9(2), 272-300. · Zbl 0718.93054
[31] Weiss, A. J., & Friedlander, B. (1991). Array shape calibration using eigenstructure methods. Signal Processing, 22(3), 251-258. · doi:10.1016/0165-1684(91)90013-9
[32] Weiss, A. J., & Friedlander, B. (1996). “Almost Blind” steering vector estimation using second-order moments. IEEE Transactions on Signal Processing, 44(4), 1024-1027. · doi:10.1109/78.492562
[33] Wijnholds, S. J., Boonstra, A. J. (2006). A multisource calibration method for phased array radio telescopes. In: Proceedings of 4th IEEE workshop on sensor array and multi-channel processing. Waltham, MA: IEEE Press, 2006, 200-204. · Zbl 1392.94207
[34] Wijnholds, S. J., & Veen, A. J. (2009). Multisource self-calibration for sensor arrays. IEEE Transactions on Signal Processing, 57(9), 3512-3522. · Zbl 1391.94440 · doi:10.1109/TSP.2009.2022894
[35] Zhang, X., Chen, C., Li, J., & Xu, D. (2014). Blind DOA and polarization estimation for polarization-sensitive array using dimension reduction MUSIC. Multidimensional Systems and Signal Processing, 25, 67-82. · Zbl 1282.93251 · doi:10.1007/s11045-012-0186-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.