×

Coordinate transformations and matter waves cloaking. (English) Zbl 1364.35300

Summary: The transformation method provides an efficient tool to control wave propagation inside materials. Using the coordinate transformation approach, we study invisibility cloaks with sphere, cylinder and ellipsoid structures for electronic waves propagation. The underlying physics behind this investigation is the fact that a Schrödinger equation with position dependent mass tensor and potentials has a covariant form which follows the coordinate transformation. Using this technique, we obtain the exact spatial form of the mass tensor and potentials for a variety of cloaks with different shapes.

MSC:

35Q40 PDEs in connection with quantum mechanics
35A30 Geometric theory, characteristics, transformations in context of PDEs
35L05 Wave equation
78A48 Composite media; random media in optics and electromagnetic theory
Full Text: DOI

References:

[1] Ward, A.; Pendry, J., Refraction and geometry in Maxwell’s equations, J. Mod. Opt., 43, 4, 773 (1996) · Zbl 0941.78514
[2] Pendry, J. B.; Schurig, D.; Smith, D. R., Controlling electromagnetic fields, Science, 312, 5781, 1780 (2006) · Zbl 1226.78003
[3] Leonhardt, U.; Philbin, T. G., General relativity in electrical engineering, New J. Phys., 8, 10, 247 (2006)
[4] Schurig, D.; Pendry, J.; Smith, D. R., Calculation of material properties and ray tracing in transformation media, Opt. Express, 14, 21, 9794 (2006)
[5] Leonhardt, U., Optical conformal mapping, Science, 312, 5781, 1777 (2006) · Zbl 1226.78001
[6] Leonhardt, U., Notes on conformal invisibility devices, New J. Phys., 8, 7, 118 (2006)
[7] Schurig, D.; Pendry, J.; Smith, D., Transformation-designed optical elements, Opt. Express, 15, 22, 14772 (2007)
[8] Chen, H.; Chan, C., Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett., 91, 18, 183518 (2007)
[9] Zhang, S.; Genov, D. A.; Sun, C.; Zhang, X., Cloaking of matter waves, Phys. Rev. Lett., 100, 12, Article 123002 pp. (2008)
[10] Lin, D.-H.; Luan, P.-G., Cloaking of matter waves under the global Aharonov-Bohm effect, Phys. Rev. A, 79, 5, Article 051605 pp. (2009)
[11] Lin, D.-H., Cloaking spin-\( \frac{1}{2}\) matter waves, Phys. Rev. A, 81, 6, Article 063640 pp. (2010)
[12] Liao, B.; Zebarjadi, M.; Esfarjani, K.; Chen, G., Cloaking core-shell nanoparticles from conducting electrons in solids, Phys. Rev. Lett., 109, Article 126806 pp. (2012)
[13] Liao, B.; Zebarjadi, M.; Esfarjani, K.; Chen, G., Isotropic and energy-selective electron cloaks on graphene, Phys. Rev. B, 88, Article 155432 pp. (2013)
[14] Fleury, R.; Alù, A., Quantum cloaking based on scattering cancellation, Phys. Rev. B, 87, Article 045423 pp. (2013)
[15] Fleury, R.; Alù, A., Furtive quantum sensing using matter-wave cloaks, Phys. Rev. B, 87, Article 201106 pp. (2013)
[16] Fleury, R.; Alù, A., Manipulation of electron flow using near-zero index semiconductor metamaterials, Phys. Rev. B, 90, Article 035138 pp. (2014)
[17] Lee, J. Y.; Lee, R.-K., Hiding the interior region of core-shell nanoparticles with quantum invisible cloaks, Phys. Rev. B, 89, Article 155425 pp. (2014)
[18] Aktaş, M.; Sever, R., Exact solution of Schrödinger equation with deformed ring-shaped potential, J. Math. Chem., 37, 2, 139-148 (2005) · Zbl 1072.81062
[19] Levy-Leblond, J.-M., Position-dependent effective mass and Galilean invariance, Phys. Rev. A, 52, 3, 1845 (1995)
[20] Dekar, L.; Chetouani, L.; Hammann, T. F., An exactly soluble Schrödinger equation with smooth position-dependent mass, J. Math. Phys., 39, 5, 2551 (1998) · Zbl 1001.81012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.