×

Numerical solutions of the time-dependent Schrödinger equation with position-dependent effective mass. (English) Zbl 1535.65165

Summary: Numerical solution of the time-dependent Schrödinger equation with a position-dependent effective mass is challenging to compute due to the presence of the non-constant effective mass. To tackle the problem we present operator splitting-based numerical methods. The wavefunction will be propagated either by the Krylov subspace method-based exponential integration or by an asymptotic Green’s function-based time propagator. For the former, the wavefunction is given by a matrix exponential whose associated matrix-vector product can be approximated by the Krylov subspace method; and for the latter, the wavefunction is propagated by an integral with retarded Green’s function that is approximated asymptotically. The methods have complexity \(O(N\log N)\) per step with appropriate algebraic manipulations and fast Fourier transform, where \(N\) is the number of spatial points. Numerical experiments are presented to demonstrate the accuracy, efficiency, and stability of the methods.
{© 2023 Wiley Periodicals LLC.}

MSC:

65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65F25 Orthogonalization in numerical linear algebra
65F55 Numerical methods for low-rank matrix approximation; matrix compression
65F60 Numerical computation of matrix exponential and similar matrix functions
65T50 Numerical methods for discrete and fast Fourier transforms
65M80 Fundamental solutions, Green’s function methods, etc. for initial value and initial-boundary value problems involving PDEs
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
35B40 Asymptotic behavior of solutions to PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations

Software:

expmARPACK

References:

[1] M.Aktaş and R.Sever, Effective mass schrödinger equation for exactly solvable class of one‐dimensional potentials, J. Math. Chem.43 (2008), 92-100. · Zbl 1229.81292
[2] F.Arias de Saavedra, J.Boronat Medico, A.Polls Martí, and A.Fabrocini, Effective mass of one 4 he in liquid 3 he, Phys. Rev. B50, núm. 6 (1994), 4248-4251.
[3] Z.Bai, Krylov subspace techniques for reduced‐order modeling of large‐scale dynamical systems, Appl. Numer. Math.43 (2002), 9-44. · Zbl 1012.65136
[4] Y.Ban, T.Endo, A.Yamamoto, and Y.Yamane, Explicit time integration scheme using krylov subspace method for reactor kinetics equation, J. Nucl. Sci. Technol.48 (2011), 243-255.
[5] W.Bao, D.Jaksch, and P. A.Markowich, Numerical solution of the gross-pitaevskii equation for bose-einstein condensation, J. Comput. Phys.187 (2003a), 318-342. · Zbl 1028.82501
[6] W.Bao, S.Jin, and P. A.Markowich, Numerical study of time‐splitting spectral discretizations of nonlinear schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput.25 (2003b), 27-64. · Zbl 1038.65099
[7] M.Barranco, M.Pi, S.Gatica, E. S.Hernández, and J.Navarro, Structure and energetics of mixed 4 he‐3 he drops, Phys. Rev. B56 (1997), 8997-9003.
[8] M.Bednarik and M.Cervenka, The exact solution of the schrödinger equation with a polynomially spatially varying mass, J. Math. Phys.58 (2017), 072103. · Zbl 1370.81054
[9] R.Beerwerth and H.Bauke, Krylov subspace methods for the dirac equation, Comput. Phys. Commun.188 (2015), 189-197. · Zbl 1344.81009
[10] C. M.Bender and H. F.Jones, Interactions of hermitian and non‐hermitian hamiltonians, J. Phys. A Math. Theor.41 (2008), 244006. · Zbl 1140.81377
[11] J.‐P.Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys.114 (1994), 185-200. · Zbl 0814.65129
[12] K.Blom and A.Ruhe, A krylov subspace method for information retrieval, SIAM J Matrix Anal Appl26 (2004), 566-582. · Zbl 1101.68024
[13] M. A.Botchev, Krylov subspace exponential time domain solution of maxwell’s equations in photonic crystal modeling, J. Comput. Appl. Math.293 (2016), 20-34. · Zbl 1322.65056
[14] M. A.Botchev, A. M.Hanse, and R.Uppu, Exponential krylov time integration for modeling multi‐frequency optical response with monochromatic sources, J. Comput. Appl. Math.340 (2018), 474-485. · Zbl 1391.65124
[15] K.Busch, J.Niegemann, M.Pototschnig, and L.Tkeshelashvili, A Krylov‐subspace based solver for the linear and nonlinear Maxwell equations, Physica Status Solid244 (2007), 3479-3496.
[16] W. C.Chew, J. M.Jin, and E.Michielssen, Complex coordinate stretching as a generalized absorbing boundary condition, Microw. Opt. Technol. Lett.15 (1997), 363-369.
[17] S.‐C. T.Choi, C. C.Paige, and M. A.Saunders, Minres‐qlp: A krylov subspace method for indefinite or singular symmetric systems, SIAM J. Sci. Comput.33 (2011), 1810-1836. · Zbl 1230.65050
[18] H.Cobiàn and A.Schulze‐Halberg, Time‐dependent schrödinger equations with effective mass in (2+ 1) dimensions: Intertwining relations and darboux operators, J. Phys. A Math. Theor.44 (2011), 285301. · Zbl 1222.81158
[19] C.Cohen‐Tannoudji, J.Dupont‐Roc, and G.Grynberg, Photons and atoms‐introduction to quantum electrodynamics, Wiley, New York, 1997.
[20] J. W.Cooley and J. W.Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput.19 (1965), 297-301. · Zbl 0127.09002
[21] W.Edwards, L. S.Tuckerman, R. A.Friesner, and D.Sorensen, Krylov methods for the incompressible navier‐stokes equations, J. Comput. Phys.110 (1994), 82-102. · Zbl 0792.76062
[22] M.Eiermann and O. G.Ernst, A restarted krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal.44 (2006), 2481-2504. · Zbl 1129.65019
[23] B.Engquist and O.Runborg, Computational high frequency wave propagation, Acta Numer.12 (2003), 181-266. · Zbl 1049.65098
[24] B.Engquist and L.Ying, A fast directional algorithm for high frequency acoustic scattering in two dimensions, Commun. Math. Sci.7 (2009), 327-345. · Zbl 1182.65178
[25] S.Fomel, L.Ying, and X.Song, Seismic wave extrapolation using lowrank symbol approximation, Geophys. Prospect.61 (2013), 526-536.
[26] R. W.Freund and N. M.Nachtigal, A new krylov‐subspace method for symmetric indefinite linear systems, Tech. Rep., Oak Ridge National Lab., TN, 1994.
[27] D.Fujiwara, A construction of the fundamental solution for the Schrödinger equations, Proc. Japan Acad. Ser. A Math. Sci.55 (1979), 10-14. · Zbl 0421.35018
[28] E.Gallopoulos and Y.Saad, Efficient solution of parabolic equations by krylov approximation methods, SIAM J. Sci. Stat. Comput.13 (1992), 1236-1264. · Zbl 0757.65101
[29] Y.Gao, J.Mayfield, and S.Luo, A second‐order fast Huygens sweeping method for time‐dependent Schrodinger equations with perfectly matched layers, J. Sci. Comput.88 (2021), 49. · Zbl 1490.65230
[30] S.Gaudreault and J. A.Pudykiewicz, An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere, J. Comput. Phys.322 (2016), 827-848. · Zbl 1351.76106
[31] M. R.Geller and W.Kohn, Quantum mechanics of electrons in crystals with graded composition, Phys. Rev. Lett.70 (1993), 3103-3106.
[32] M. A.Gilles and A.Townsend, Continuous analogues of krylov subspace methods for differential operators, SIAM J. Numer. Anal.57 (2019), 899-924. · Zbl 1411.65047
[33] S.Goreinov, E.Tyrtyshnikov, and N.Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl.261 (1997a), 1-21. · Zbl 0877.65021
[34] S. A.Goreinov, N. L.Zamarashkin, and E. E.Tyrtyshnikov, Pseudo‐skeleton approximations by matrices of maximal volume, Math. Notes62 (1997b), 515-519. · Zbl 0916.65040
[35] M.Hochbruck, C.Lubich, and H.Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput.19 (1998), 1552-1574. · Zbl 0912.65058
[36] E.Jafarov, S.Nagiyev, R.Oste, and J.Van der Jeugt, Exact solution of the position‐dependent effective mass and angular frequency schrödinger equation: Harmonic oscillator model with quantized confinement parameter, J. Phys. A Math. Theor.53 (2020), 485301. · Zbl 1519.81186
[37] H.Jones and J.Mateo, Equivalent hermitian hamiltonian for the non‐hermitian‐ x 4 potential, Phys. Rev. D73 (2006), 085002.
[38] T.Kato, Trotter’s product formula for an arbitrary pair of self‐adjoint contraction semigroup, topics in Func, Anal., Adv. Math. Suppl. Stud.3 (1978), 185-195. · Zbl 0461.47018
[39] J. B.Keller, Semiclassical mechanics, SIAM Rev.27 (1985), 485-504. · Zbl 0581.70012
[40] H.Kitada and H.Kumano‐go, A family of Fourier integral operators and the fundamental solution for a Schrödinger equation, Osaka J. Math.18 (1981), 291-360. · Zbl 0472.35034
[41] L.Knizhnerman and V.Simoncini, A new investigation of the extended krylov subspace method for matrix function evaluations, Numer. Linear Algebra Appl.17 (2010), 615-638. · Zbl 1240.65154
[42] L.Knizhnerman and V.Simoncini, Convergence analysis of the extended krylov subspace method for the lyapunov equation, Numer. Math.118 (2011), 567-586. · Zbl 1230.65055
[43] R. A.Kraenkel and M.Senthilvelan, On the solutions of the position‐dependent effective mass schrödinger equation of a nonlinear oscillator related with the isotonic oscillator, J. Phys. A Math. Theor.42 (2009), 415303. · Zbl 1179.81057
[44] S.Leung, J.Qian, and S.Serna, Fast Huygens sweeping methods for Schrödinger equations in the semi‐classical regime, Methods Appl. Anal.21 (2014), 31-66. · Zbl 1426.65151
[45] G.Lévai and O.Özer, An exactly solvable schrödinger equation with finite positive position‐dependent effective mass, J. Math. Phys.51 (2010), 092103. · Zbl 1309.81079
[46] J.‐M.Levy‐Leblond, Position‐dependent effective mass and galilean invariance, Phys. Rev. A52 (1995), 1845-1849.
[47] S.Lie, Theorie der transformationsgruppen, Vol 2, American Mathematical Society, Providence, RI, 1970. · JFM 25.0626.01
[48] W.Lu, J.Qian, and R.Burridge, Extending Babich’s ansatz for point‐source Maxwell’s equations using Hadamard’s method, Multiscale Model. Simul.16 (2018), 727-751. · Zbl 1448.65242
[49] S.Luo, Fast Huygens sweeping methods for time‐dependent Schrodinger equation with perfectly matched layers, SIAM J. Sci. Comput.41 (2019), A877-A899. · Zbl 1411.65142
[50] S.Luo, J.Qian, and R.Burridge, Fast Huygens sweeping methods for Helmholtz equations in inhomogeneous media in the high frequency regime, J. Comput. Phys.270 (2014), 378-401. · Zbl 1349.78051
[51] A.Martinez, An introduction to semiclassical and microlocal analysis, Springer, New York, 2002. · Zbl 0994.35003
[52] V. P.Maslov and M. V.Fedoriuk, Semi‐classical approximation in quantum mechanics, D. Reidel Publishing Company, Dordrecht, 1981. · Zbl 0458.58001
[53] J.Mayfield, Y.Gao, and S.Luo, An asymptotic Green’s function method for the wave equation, J. Comput. Phys.446 (2021), 110655. · Zbl 07516465
[54] R. I.McLachlan and G. R. W.Quispel, Splitting methods, Acta Numer.11 (2002), 341-434. · Zbl 1105.65341
[55] A.Mostafazadeh, Pseudo‐hermiticity versus pt symmetry: The necessary condition for the reality of the spectrum of a non‐hermitian hamiltonian, J. Math. Phys.43 (2002), 205-214. · Zbl 1059.81070
[56] J.Niegemann, L.Tkeshelashvili, and K.Busch, Higher‐order time‐domain simulations of maxwell’s equations using krylov‐subspace methods, J. Comput. Theor. Nanosci.4 (2007), 627-634.
[57] M.Plancherel and M.Leffler, Contribution à l’étude de la représentation d’une Fonction Arbitraire Par Des intégrales définies, Rendicont. del Circ. Matemat. di Palermo30 (1910), 289-335. · JFM 41.0472.01
[58] A.Puente, L.Serra, and M.Casas, Dipole excitation of na clusters with a non‐local energy density functional, Zeitsch. Phys. D Atoms Mol. Clusters31 (1994), 283-286.
[59] J.Qian, S.Luo, and R.Burridge, Fast Huygens’ sweeping methods for multiarrival Green’s functions of Helmholtz equations in the high‐frequency regime, Geophysics80 (2015), T91-T100.
[60] J.Qian, W.Lu, L.Yuan, S.Luo, and R.Burridge, Eulerian geometrical optics and fast Huygens sweeping methods for three‐dimensional time‐harmonic high‐frequency Maxwell’s equations in inhomogeneous media, Multiscale Model. Simul.14 (2016), 595-636. · Zbl 1338.65251
[61] C.Quesne and V.Tkachuk, Deformed algebras, position‐dependent effective masses and curved spaces: An exactly solvable coulomb problem, J. Phys. A Math. Gen.37 (2004), 4267-4281. · Zbl 1063.81070
[62] P.Ring and P.Schuck, The nuclear many‐body problem, Springer Science & Business Media, Berlin, 2004.
[63] Y.Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal.29 (1992), 209-228. · Zbl 0749.65030
[64] Y.Saad and B.Semeraro, Application of krylov exponential propagation to fluid dynamics equations, 10th Comput. Fluid Dyn. Conf., 1991, p. 1567.
[65] L. S.Schulman, Techniques and applications of path integration, Wiley, New York, 1981. · Zbl 0587.28010
[66] A.Schulze‐Halberg, Form‐preserving transformations of time‐dependent schrödinger equation with time‐and position‐dependent mass, Commun. Theor. Phys.43 (2005a), 657-665.
[67] A.Schulze‐Halberg, Quantum systems with effective and time‐dependent masses: Form‐preserving transformations and reality conditions, Open Phys.3 (2005b), 591-609.
[68] L.Serra and E.Lipparini, Spin response of unpolarized quantum dots, EPL (Europhysics Letters)40 (1997), 667-672.
[69] H. H. B.Sørensen, P. C.Hansen, D. E.Petersen, S.Skelboe, and K.Stokbro, Krylov subspace method for evaluating the self‐energy matrices in electron transport calculations, Phys. Rev. B77 (2008), 155301.
[70] G.Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal.5 (1968), 506-517. · Zbl 0184.38503
[71] D.Tangman, A.Gopaul, and M.Bhuruth, Exponential time integration and chebychev discretisation schemes for fast pricing of options, Appl. Numer. Math.58 (2008), 1309-1319. · Zbl 1151.91546
[72] A.Zagoskin, Quantum theory of many‐body systems: Techniques and applications, 2nd ed., Springer Publishing Company, Incorporated, Cham, 2014. · Zbl 06300949
[73] A.Zhang, P.Shi, Y.Ling, and Z.Hua, Solutions of one‐dimensional effective mass schrödinger equation for pt‐symmetric scarf potential, Acta Phys. Pol. A120 (2011), 987-991.
[74] C.Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations, J. Comput. Phys.227 (2007), 537-556. · Zbl 1127.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.