×

Analytical solutions of the molecular Kratzer-Feus potential by means of the Nikiforov-Uvarov method. (English) Zbl 1523.81213

Summary: The analytical methods for solving Schrödinger equation are essential and effective tools with which we can investigate the spectroscopic properties, the electronic structure, and the energetic properties of the diatomic molecules (DMs). Accordingly, in this work, we used the Nikiforov-Uvarov (NU) method to solve the three-dimensional nonrelativistic Schrödinger equation with the molecular Kratzer-Feus (KF) potential and obtain the exact analytical bound state energy eigenvalues as well as their corresponding normalized eigenfunctions. The effective KF diatomic molecular potential well is investigated and represented graphically for several well-known DMs. The bound state energy levels are tabulated numerically for arbitrary values of the vibrational and rotational quantum numbers. The results obtained in this work are found to be in excellent agreement with the already-existing results in the literature.

MSC:

81V55 Molecular physics
70F05 Two-body problems
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35A09 Classical solutions to PDEs
35P05 General topics in linear spectral theory for PDEs
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
62H22 Probabilistic graphical models

References:

[1] Kratzer, A., Z. für Phys, 3, 289 (1920) · doi:10.1007/BF01327754
[2] Fues, E., Ann. Phys, 80, 367 (1926) · JFM 52.0968.07 · doi:10.1002/andp.19263851204
[3] Hoseini, F.; Saho, JK; Hassanabadi, H., Comm. Theor. Phys, 65, 695 (2016) · Zbl 1345.81065 · doi:10.1088/0253-6102/65/6/695
[4] Najafizade, SA; Hassanabadi, H.; Zarrinkamar, S., Can. J. Phys, 94, 1085 (2016) · doi:10.1139/cjp-2016-0113
[5] Hulburt, HM; Hirschfelder, JO, J. Chem. Phys, 9, 61 (1941) · doi:10.1063/1.1750827
[6] Berkdermir, C., J. Math. Chem, 46, 492 (2009) · Zbl 1198.81214 · doi:10.1007/s10910-008-9473-5
[7] Berkdermir, C.; Server, R., J. Math. Chem, 46, 1122 (2009) · Zbl 1198.81215 · doi:10.1007/s10910-008-9498-9
[8] Ikhdair, SM, Chem. Phys, 361, 9 (2009) · doi:10.1016/j.chemphys.2009.04.023
[9] Berkdermir, C.; Han, J., Chem. Phys. Lett, 409, 203 (2005) · doi:10.1016/j.cplett.2005.05.021
[10] Sever, R.; Tezcan, C.; Akta¸s, Ö.; Ye¸silta¸s, J. Math. Chem, 43, 845 (2007) · Zbl 1151.81333 · doi:10.1007/s10910-007-9233-y
[11] Berkdermir, C.; Berkdemir, A.; Han, J., Chem. Phys. Lett, 417, 326 (2006) · doi:10.1016/j.cplett.2005.10.039
[12] Sever, R.; Bucurgat, M.; Tezcan, C.; Yeşiltaş, Ö., J. Math. Chem, 43, 749 (2007) · Zbl 1196.81115 · doi:10.1007/s10910-007-9228-8
[13] Ikhdair, S.; Sever, R., J. Mol. Struct, 806, 155 (2007) · doi:10.1016/j.theochem.2006.11.019
[14] Morales, DA, Chem. Phys. Lett, 161, 253 (1989) · doi:10.1016/S0009-2614(89)87070-8
[15] Qiang, WC; Dong, SH, Phys. Lett. A, 363, 169 (2007) · Zbl 1197.81128 · doi:10.1016/j.physleta.2006.10.091
[16] Morales, DA, Chem. Phys. Lett, 394, 68 (2004) · doi:10.1016/j.cplett.2004.06.109
[17] Nasser, I.; Abdelmonem, MS; Bahlouli, H.; Alhaidari, AD, J. Phys. B: At. Mol. Opt. Phys, 40, 4245 (2007) · doi:10.1088/0953-4075/40/21/011
[18] Nasser, I.; Abdelmonem, MS; Bahlouli, H.; Alhaidari, AD, J. Phys. B: At. Mol. Opt. Phys, 41, 215001 (2008) · doi:10.1088/0953-4075/41/21/215001
[19] Oyewumi, KJ, Int. J. Theor. Phys, 49, 1302 (2010) · Zbl 1194.81074 · doi:10.1007/s10773-010-0311-8
[20] Badawi, M.; Bessis, N.; Bessis, G., J. Phys. B: Atom Mol. Phys, 5, L157 (1972) · doi:10.1088/0022-3700/5/8/004
[21] Z. Yalçin, M.; Aktaş; şimşek, M., Int. J. Quantum Chem, 76, 618 (2000) · doi:10.1002/(SICI)1097-461X(2000)76:5<618::AID-QUA4>3.0.CO;2-9
[22] Ikhdair, SM; Sever, R., J. Mol. Struct, 855, 13 (2008) · doi:10.1016/j.theochem.2007.12.044
[23] Dong, SH; Sun, GH, Phys. Scr, 70, 94 (2004) · Zbl 1051.81007 · doi:10.1088/0031-8949/70/2-3/004
[24] Okon, IB; Ituen, EE; Popoola, O.; Antia, AD, Int. J. Recent. Adv. Phys, 2, 1 (2013)
[25] Bayrak, O.; Boztosun, I.; Çiftçi, H., Int. J. Quant. Chem, 107, 540 (2007) · doi:10.1002/qua.21141
[26] Nikiforov, AF; Uvarov, VB, Special Functions of Mathematical Physics A UNIFIED INTRODUCTION with Applications (1988), Boston, MA: Birkhäuser, Boston, MA · Zbl 0624.33001
[27] C. Berkdemir, Application of the Nikiforov-Uvarov Method in Quantum Mechanics, (InTech, UK, 2012)
[28] Oyewumi, KJ, Found. Phys. Lett, 18, 75 (2005) · doi:10.1007/s10702-005-2481-9
[29] Gradshteyn, I.; Solomonovich, Iosif Moiseevich Ryzhik. Table of Integrals, Series, and Products (2014), UK: Academic press, UK
[30] Ikhdair, SM; Sever, R., J. Math. Chem, 45, 1137 (2009) · Zbl 1198.81217 · doi:10.1007/s10910-008-9438-8
[31] Ikot, AN, Eclet. Quim, 45, 65 (2020) · doi:10.26850/1678-4618eqj.v45.1.2020.p65-77
[32] Ibekwe, EE; Okorie, US; Emah, JB; Inyang, EP; Ekong, SA, Eur. Phys. J. Plus, 136, 1 (2021) · doi:10.1140/epjp/s13360-021-01090-y
[33] Oyewumi, KJ; Sen, KD, J. Math. Chem, 50, 1039 (2012) · Zbl 1403.81015 · doi:10.1007/s10910-011-9967-4
[34] Purohit, KR; Parmar, RH; Rai, AK, J. Mol. Model, 27, 1 (2021) · doi:10.1007/s00894-021-04965-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.