×

Fractional duals of the Poisson process on time scales with applications in cryptography. (English) Zbl 07909834

Summary: A super-structure system for probability densities, covering not just typical types but also fractional ones, was developed using the time scale theory. From a mathematical point of view, we discover duals of the Poisson process on the time scale \(\mathbb{T}=\mathbb{R}\) for the time scales \(\mathbb{T}=\mathbb{Z}\) and \(\mathbb{T}=q^{\mathbb{Z}}\), evaluating \(\nabla\)-calculus and \(\Delta\)-calculus. Also, we search the fractional extensions of the Poisson process on these time scales and detect duals of them. A simulation allows for comparing the nabla and delta types of the observed distributions, not just typical types but also fractional ones. As an application, we also propose new substitution boxes (S-boxes) using the proposed stochastic models and compare the performance of S-boxes created in this way. Given that the S-box is the core for confusion in Advanced Encryption Standard (AES), the formation of these new S-boxes represents an interesting application of these stochastic models.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
05A30 \(q\)-calculus and related topics
94A60 Cryptography
Full Text: DOI

References:

[1] Hilger, S., Analysis on measure chains-a unified approach to continuous and discrete calculus, Results in Mathematics, 18, 1-2, 18-56, 1990 · Zbl 0722.39001 · doi:10.1007/BF03323153
[2] Bohner, M.; Peterson, A., Advances in Dynamic Equations on Time Scales, 2003, Boston: Birkhauser, Boston · Zbl 1025.34001 · doi:10.1007/978-0-8176-8230-9
[3] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales, 2001, Boston: Birkhauser, Boston · Zbl 0978.39001 · doi:10.1007/978-1-4612-0201-1
[4] Williams, P. A.: Unifying fractional calculus with time scales. [Ph.D. thesis]. The University of Melbourne (2012)
[5] Poulsen, D. R., Spivey, M. Z., Marks, R. J.: The Poisson Process and Associated Probability Distributions on Time Scales. System Theory (SSST) 2011 IEEE 43rd Southeastern Symposium, pp. 49-54, 14-16 March 2011 (2011)
[6] Ganji, M., Gharari, F.: Bayesian estimation in delta and nabla discrete fractional Weibull distributions. Journal of Probability and Statistics. Advanced online publication, (2016). doi:10.1155/2016/1969701 · Zbl 1431.62054
[7] Ganji, M.; Gharari, F., A new method for generating discrete analogues of continuous distributions, Journal of Statistics Theory and Applications, 17, 1, 39-58, 2018 · doi:10.2991/jsta.2018.17.1.4
[8] Ganji, M.; Gharari, F., The discrete delta and nabla Mittag-Leffler distributions, Communications in Statistics-Theory and Methods, 47, 18, 4568-4589, 2018 · Zbl 1508.60015 · doi:10.1080/03610926.2017.1377254
[9] Ganji, M.; Gharari, F., A new stochastic order based on discrete Laplace transform and some ordering results of order statistics, Communications in Statistics-Theory and Methods, 52, 6, 1963-1980, 2021 · Zbl 07701391
[10] Gharari, F.; Bakouch, H.; Karakaya, K., A pliant model to count data: Nabla Poisson-Lindley distribution with a practical data example, Bulletin of the Iranian Mathematical Society, 49, 32, 2023 · Zbl 1517.60021 · doi:10.1007/s41980-023-00773-9
[11] Bakouch, HS; Gharari, F.; Karakaya, K.; Akdogan, Y., Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data, Mathematical Population Studies, 2024 · Zbl 07889427 · doi:10.1080/08898480.2024.2301865
[12] Abdeljawad, T., Alzabut, J.O.: The \(q-\) fractional analogue of Gronwall-type inequality. Journal of Function Spaces and Applications, Volume 2013, Article ID 543839, 7 pages, (2013). doi:10.1155/2013/543839 · Zbl 1290.39005
[13] Zhu, J., Wu, L.: Fractional Cauchy problem with caputo Nabla derivative on time scales. Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2015, Article ID 486054, 23 pages (2015). doi:10.1155/2015/486054 · Zbl 1355.34023
[14] Abdeljawad, T.: On delta and nabla caputo fractional differences and dual identities. Discrete Dynamics in Nature and Society, 2013:12. Article ID 406910 (2013) · Zbl 1417.26002
[15] Charalambides, CA, Discrete q-distributions, 2016, Hoboken, New Jersey: John Wiley & Sons, Hoboken, New Jersey · Zbl 1357.60005 · doi:10.1002/9781119119128
[16] Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 53-64 (2004). MR2120631 · Zbl 1087.60064
[17] Mainardi, F., Gorenflo, R., Vivoli, A.: Renewal processes of Mittag-Leffler and Wright type. Fract. Calc. Appl. Anal. 8, 7-38 (2005). MR2179226 · Zbl 1126.60070
[18] Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600-1620 (2011). MR2835248 (2012k:60252) · Zbl 1245.60084
[19] Shannon, CE, Communication theory of secrecy systems, The Bell system technical journal, 28, 4, 656-715, 1949 · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[20] National Institute of Standards and Technology, FIPS PUB 46-3: Data Encryption Standard (DES), super-sedes FIPS, pp. 46-2 (1999)
[21] Advanced encryption standard (aes), Federal Information Processing Standards Publication 197 Std
[22] Khan, M.; Shah, T.; Mahmood, H.; Asif, M.; Iqtadar, G., A novel technique for the construction of strong S-boxes based on chaotic lorenz systems, Nonlinear Dyn., 70, 2303-2311, 2012 · doi:10.1007/s11071-012-0621-x
[23] Ozkaynak, F.; Yavuz, S., Designing chaotic S-boxes based on time-delay chaotic system, Nonlinear Dyn., 74, 551-557, 2013 · doi:10.1007/s11071-013-0987-4
[24] Hussain, I.; Tariq, S.; Muhammad, A., A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm, Nonlinear Dyn., 70, 1791-1794, 2012 · doi:10.1007/s11071-012-0573-1
[25] Cavusoglu, U.; Kaçar, S.; Zengin, A.; Pehlivan, I., A novel hybrid encryption algorithm based on chaos and S-AES algorithm, Nonlinear Dyn., 91, 939-956, 2018
[26] Lambic, D.: A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design. Nonlinear Dyn. pp. 1-13 (2020)
[27] Hematpour, N.; Ahadpour, S.; Behnia, S., Presence of dynamics of quantum dots in the digital signature using DNA alphabet and chaotic S-box, Multimedia Tools and Applications, 80, 7, 10509-10531, 2021 · doi:10.1007/s11042-020-10059-5
[28] Hematpour, N., Ahadpour, S., Sourkhani, I. G., Sani, R. H.: A new steganographic algorithm based on coupled chaotic maps and a new chaotic S-box. Multimedia Tools and Applications, pp. 1-32 (2022)
[29] Hematpour, N.; Ahadpour, S., Execution examination of chaotic S-box dependent on improved PSO algorithm, Neural Computing and Applications, 33, 10, 5111-5133, 2021 · doi:10.1007/s00521-020-05304-9
[30] Hematpour, N., Ahadpour, S., Behnia, S.: A Quantum Dynamical Map in the Creation of Optimized Chaotic S-Boxes. In Chaotic Modeling and Simulation International Conference (pp. 213-227). Springer, Cham (2022)
[31] Ullah, S.; Liu, X.; Waheed, A.; Zhang, S., An efficient construction of S-box based on the fractional-order Rabinovich-Fabrikant chaotic system, Integration, 94, 2024 · doi:10.1016/j.vlsi.2023.102099
[32] Artuger, F.: A new S-box generator algorithm based on chaos and cellular automata, pp. 1-10. Signal, Image and Video Processing (2024)
[33] Acikkapi, MS; Ozkaynak, F.; Ozer, AB, Side-channel analysis of chaos-based substitution box structures, IEEE Access, 7, 79030-79043, 2019 · doi:10.1109/ACCESS.2019.2921708
[34] Akhavan, A.; Samsudin, A.; Akhshani, A., Cryptanalysis of “an improvement over an image encryption method based on total shuffling”, Optics Communications, 350, 77-82, 2015 · doi:10.1016/j.optcom.2015.03.079
[35] Fan, C.; Ding, Q., Counteracting the dynamic degradation of high-dimensional digital chaotic systems via a stochastic jump mechanism, Digital Signal Processing, 129, 2022 · doi:10.1016/j.dsp.2022.103651
[36] Khan, MA; Ali, A.; Jeoti, V.; Manzoor, S., A chaos-based substitution box (S-Box) design with improved differential approximation probability (DP), Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 42, 219-238, 2018 · doi:10.1007/s40998-018-0061-9
[37] Khan, MF; Ahmed, A.; Saleem, K., A novel cryptographic substitution box design using Gaussian distribution, IEEE Access, 7, 15999-16007, 2019 · doi:10.1109/ACCESS.2019.2893176
[38] Hematpour, N., Gharari, F., Ors, B., Yalcin, M. E.: A novel S-box design based on quantum tent maps and fractional stochastic models with an application in image encryption. Soft Computing, pp. 1-34 (2023)
[39] Waheed, A.; Subhan, F.; Suud, MM; Alam, M.; Ahmad, S., An analytical review of current S-box design methodologies, performance evaluation criteria, and major challenges, Multimedia Tools and Applications, 82, 19, 29689-29712, 2023 · doi:10.1007/s11042-023-14910-3
[40] Cusick, T.; Stanica, P., Cryptographic boolean functions and applications, 2017, Amsterdam: Elsevier, Amsterdam · Zbl 1359.94001
[41] Webster, A., Tavares, S.: On the design of S-boxes. Conference on the theory and application of cryptographic techniques, Springer, pp. 523-34 (1985)
[42] Zhang, H., Ma, T., Huang, G., Wang, Z.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man. Part B Cybern 40, 831-844 (2009)
[43] Matsui, M.: Linear cryptanalysis method for des cipher, Workshop on the theory and application of cryptographic techniques, Springer, Berlin, Heidelberg pp. 386-397. (1993) · Zbl 0951.94519
[44] Biham, E.; Shamir, A., Differential cryptanalysis of des like cryptosystems, J. Cryptol., 4, 3-72, 1991 · Zbl 0729.68017 · doi:10.1007/BF00630563
[45] Saichev, AI; Zaslavsky, GM, Fractional kinetic equations: solutions and applications, Chaos., 7, 753-764, 1997 · Zbl 0933.37029 · doi:10.1063/1.166272
[46] Repin, ON; Saichev, AI, Fractional Poisson law, Radiophysics and Quantum, Electronics., 43, 738-741, 2000
[47] Laskin, N., Fractional Poisson process, Communications in Nonlinear Science and Numerical Simulation., 8, 201-213, 2003 · Zbl 1025.35029 · doi:10.1016/S1007-5704(03)00037-6
[48] Miller, KS; Ross, B., An Introduction to the Fractional Calculus and Fractional, 1993, New York: Differential Equations. John Wiley, New York · Zbl 0789.26002
[49] Butzer, PLL; Westphal, U., An Introduction to Fractional Calculus, 2000, Singapore: Applications of Fractional Calculus in Physics. World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/9789812817747_0001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.