×

A large deformation isogeometric approach for flexoelectricity and soft materials. (English) Zbl 1440.74443

Summary: We propose an isogeometric approach for flexoelectricity in soft dielectric materials at finite deformations accounting for Maxwell stresses on the surface between two different media. In contrast to piezoelectricity where there is a linear dependence between mechanical strain and electric polarization, in flexoelectricity the polarization is related to strain gradients which requires a \(C^1\) continuous finite element framework. In electro-mechanical materials, the Maxwell stress emerges as a consequence of the coupling effect between electrostatics and mechanics. If a solid body is embedded in a surrounding medium such as air or vacuum, the Maxwell stress acting on the surfaces governs the interaction between electric fields and deformable media. This is quite difficult to handle due to the surface discontinuity and the traction electrical forces still have to satisfy some certain continuity conditions, hence an appropriate numerical framework is required for the treatment. Here, we employed Non-Uniform Rational B-spline (NURBS) functions with knot insertion technique in order to introduce discontinuities across material interfaces while still maintaining \(C^1\) continuity in the domain to evaluate the coupling effect of strain gradient and electric polarization in the regime of finite deformation. The accuracy and robustness of our IGA approach for flexoelectric soft materials are demonstrated in some benchmark numerical examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74L15 Biomechanical solid mechanics
Full Text: DOI

References:

[1] Scott, J. F., Lattice perturbations in CaWO4 and CaMoO4, J. Chem. Phys., 48, 2, 874-876 (1968)
[2] Dierking, I., Flexoelectricity in liquid crystals, Liquid Cryst. Today, 22, 2 (2013), 48-48
[3] Petrov, A. G., Flexoelectricity of model and living membranes, Biomembranes, 1561, 1, 1-25 (2002)
[4] Jiang, X.; Huang, W.; Zhang, S., Flexoelectric nano-generator: Materials, structures and devices, Nano Energy, 2, 6, 1079-1092 (2013)
[5] Toupin, R., Stress tensors in elastic dielectrics, Arch. Ration. Mech. Anal., 5, 1, 440-452 (1960) · Zbl 0113.23502
[6] Mindlin, R. D., Polarization gradient in elastic dielectrics, Int. J. Solids Struct., 4, 6, 637-642 (1968) · Zbl 0159.57001
[7] Suo, Z.; Zhao, X.; Greene, W. H., A nonlinear field theory of deformable dielectrics, J. Mech. Phys. Solids, 56, 2, 467-486 (2008) · Zbl 1171.74345
[8] Tian, L.; Tevet-Deree, L.d.; Bhattacharya, K., Dielectric elastomer composites, J. Mech. Phys. Solids, 60, 1, 181-198 (2012) · Zbl 1244.74014
[9] Majdoub, M.; Sharma, P.; Cagin, T., Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect, Phys. Rev. B, 77, 12, Article 125424 pp. (2008)
[10] Gharbi, M.; Sun, Z.; Sharma, P.; White, K.; El-Borgi, S., Flexoelectric properties of ferroelectrics and the nanoindentation size-effect, Int. J. Solids Struct., 48, 2, 249-256 (2011) · Zbl 1202.74055
[11] Liu, L., An energy formulation of continuum magneto-electro-elasticity with applications, J. Mech. Phys. Solids, 63, 451-480 (2014) · Zbl 1303.74017
[12] Mao, Y.; Ai, S.; Xiang, X.; Chen, C., Theory for dielectrics considering the direct and converse flexoelectric effects and its finite element implementation, Appl. Math. Model., 40, 15, 7115-7137 (2016) · Zbl 1471.74070
[13] Nanthakumar, S.; Zhuang, X.; Park, H. S.; Rabczuk, T., Topology optimization of flexoelectric structures, J. Mech. Phys. Solids, 105, 217-234 (2017)
[14] Nanthakumar, S.; Lahmer, T.; Zhuang, X.; Zi, G.; Rabczuk, T., Detection of material interfaces using a regularized level set method in piezoelectric structures, Inverse Probl. Sci. Eng., 24, 1, 153-176 (2016)
[15] Abdollahi, A.; Peco, C.; Millán, D.; Arroyo, M.; Arias, I., Computational evaluation of the flexoelectric effect in dielectric solids, J. Appl. Phys., 116, 9, Article 093502 pp. (2014)
[16] Ghasemi, H.; Park, H. S.; Rabczuk, T., A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Engrg., 313, 239-258 (2017) · Zbl 1439.74414
[17] Ghasemi, H.; Park, H. S.; Rabczuk, T., Multi-material level set-based topology optimization of flexoelectric composites, Comput. Methods Appl. Mech. Engrg., 332, 47-62 (2018) · Zbl 1439.74270
[18] Nguyen Huy, B.; Nanthakumar, S.; Zhuang, X.; Jiang, X.; Wriggers, P.; Rabczuk, T., Dynamic flexoelectric effect on piezoelectric nanostructures, Eur. J. Mech. A Solids, 71, 404-409 (2018) · Zbl 1406.74224
[19] Yvonnet, J.; Liu, L., A numerical framework for modeling flexoelectricity and Maxwell stress in soft dielectrics at finite strains, Comput. Methods Appl. Mech. Engrg., 313, 450-482 (2017) · Zbl 1439.74478
[20] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[21] Tu, C.; Peskin, C. S., Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods, SIAM J. Sci. Stat. Comput., 13, 6, 1361-1376 (1992) · Zbl 0760.76067
[22] Yoon, Y.-C.; Song, J.-H., Extended particle difference method for moving boundary problems, Comput. Mech., 54, 3, 723-743 (2014) · Zbl 1311.74132
[23] Yoon, Y. C.; Song, J. H., Extended particle difference method for weak and strong discontinuity problems: part I, Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities, Comput. Mech., 53, 6, 1087-1103 (2014) · Zbl 1398.74482
[24] Yoon, Y.-C.; Song, J.-H., Extended particle difference method for weak and strong discontinuity problems: part II. Formulations and applications for various interfacial singularity problems, Comput. Mech., 53, 6, 1105-1128 (2014)
[25] Thai, T. Q.; Rabczuk, T.; Bazilevs, Y.; Meschke, G., A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 304, 584-604 (2016) · Zbl 1425.74047
[26] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49, 3902-3914 (2009) · Zbl 1231.74422
[27] Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P.; Zi, G.; Bazilevs, Y.; De Lorenzis, L.; Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-Love theory, Comput. Methods Appl. Mech. Engrg., 284, 265-291 (2015) · Zbl 1423.74811
[28] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 47-48, 3410-3424 (2011) · Zbl 1230.74230
[29] Nguyen-Thanh, N.; Zhou, K.; Zhuang, X.; Areias, P.; Nguyen-Xuan, H.; Bazilevs, Y.; Rabczuk, T., Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Comput. Methods Appl. Mech. Engrg., 316, 1157-1178 (2017) · Zbl 1439.74455
[30] Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5, 276-289 (2010) · Zbl 1227.74107
[31] Borden, M. J.; Hughes, T. J.; Landis, C. M.; Verhoosel, C. V., A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Engrg., 273, 100-118 (2014) · Zbl 1296.74098
[32] Amiri, F.; Millán, D.; Arroyo, M.; Silani, M.; Rabczuk, T., Fourth order phase-field model for local max-ent approximants applied to crack propagation, Comput. Methods Appl. Mech. Engrg., 312, 254-275 (2016) · Zbl 1439.74339
[33] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 49, 4333-4352 (2008) · Zbl 1194.74524
[34] Kiendl, J.; Hsu, M.-C.; Wu, M. C.; Reali, A., Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 291, 280-303 (2015) · Zbl 1423.74177
[35] Tepole, A. B.; Kabaria, H.; Bletzinger, K.-U.; Kuhl, E., Isogeometric Kirchhoff-Love shell formulations for biological membranes, Comput. Methods Appl. Mech. Engrg., 293, 328-347 (2015) · Zbl 1423.74530
[36] Wang, Q.; Suo, Z.; Zhao, X., Bursting drops in solid dielectrics caused by high voltages, Nature Commun., 3, 1157 (2012)
[37] Piegl, L.; Tiller, W., The Nurbs Book (1997) · Zbl 0868.68106
[38] Verhoosel, C. V.; Scott, M. A.; De Borst, R.; Hughes, T. J., An isogeometric approach to cohesive zone modeling, Internat. J. Numer. Methods Engrg., 87, 1-5, 336-360 (2011) · Zbl 1242.74169
[39] Nguyen, V. P.; Kerfriden, P.; Bordas, S. P., Two-and three-dimensional isogeometric cohesive elements for composite delamination analysis, Composites B, 60, 193-212 (2014)
[40] De Luycker, E.; Benson, D. J.; Belytschko, T.; Bazilevs, Y.; Hsu, M.-C., X-FEM in isogeometric analysis for linear fracture mechanics, Internat. J. Numer. Methods Engrg., 87, 6, 541-565 (2011) · Zbl 1242.74105
[41] Lax, M.; Nelson, D., Maxwell equations in material form, Phys. Rev. B, 13, 4, 1777 (1976)
[42] Deng, Q.; Kammoun, M.; Erturk, A.; Sharma, P., Nanoscale flexoelectric energy harvesting, Int. J. Solids Struct., 51, 18, 3218-3225 (2014)
[43] Sharma, N.; Maranganti, R.; Sharma, P., On the possibility of piezoelectric nanocomposites without using piezoelectric materials, J. Mech. Phys. Solids, 55, 11, 2328-2350 (2007) · Zbl 1171.74016
[44] Sahin, E.; Dost, S., A strain-gradients theory of elastic dielectrics with spatial dispersion, Internat. J. Engrg. Sci., 26, 12, 1231-1245 (1988)
[45] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78 (1964) · Zbl 0119.40302
[46] Mindlin, R.; Eshel, N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 1, 109-124 (1968) · Zbl 0166.20601
[47] Toupin, R. A., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 1, 385-414 (1962) · Zbl 0112.16805
[48] Spencer, A., Part III. Theory of invariants, Contin. Phys., 1, 239-353 (1971)
[49] Jarić, J. P.; Kuzmanović, D.; Golubović, Z., On tensors of elasticity, Theor. Appl. Mech., 35, 1-3, 119-136 (2008) · Zbl 1274.74054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.