×

Some algebraic invariants of the residue class rings of the edge ideals of perfect semiregular trees. (English) Zbl 1521.13017

Summary: Let \(S\) be a polynomial algebra over a field. If \(I\) is the edge ideal of a perfect semiregular tree, then we give precise formulas for values of depth, Stanley depth, projective dimension, regularity and Krull dimension of \(S/I\).

MSC:

13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
13A70 General commutative ring theory and combinatorics (zero-divisor graphs, annihilating-ideal graphs, etc.)
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)

Software:

CoCoA; Macaulay2

References:

[1] Alipour, A.; Tehranian, A., Depth and Stanley depth of edge ideals of star graphs, Int. J. Appl. Math. Stat, 56, 4, 63-69 (2017)
[2] Bouchat, R. R., Free resolutions of some edge ideals of simple graphs, J. Commut. Algebra, 2, 1, 1-35 (2010) · Zbl 1238.13028
[3] Bruns, W.; Herzog, H. J., Cohen-Macaulay Rings (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 0909.13005
[4] Caviglia, G.; Há, H. T.; Herzog, J.; Kummini, M.; Terai, N.; Trung, N. V., Depth and regularity modulo a principal ideal, J. Algebraic Comb, 49, 1, 1-20 (2019) · Zbl 1448.13028 · doi:10.1007/s10801-018-0811-9
[5] Cha, S. H., On integer sequences derived from balanced k-ary trees, In Proceedings of American Conference on Applied Mathematics, 377-381 (2012)
[6] Cimpoeas, M., Several inequalities regarding Stanley depth, Romanian J. Math. Comput. Sci., 2, 1, 28-40 (2012) · Zbl 1313.13036
[7] CoCoATeam, CoCoA: A system for doing computations in commutative algebra
[8] Dao, H.; Huneke, C.; Schweig, J., Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebraic Comb, 38, 1, 37-55 (2013) · Zbl 1307.13021 · doi:10.1007/s10801-012-0391-z
[9] Din, N. U.; Ishaq, M.; Sajid, Z., Values and bounds for depth and Stanley depth of some classes of edge ideals, AIMS Math., 6, 8, 8544-8566 (2021) · Zbl 1484.13029 · doi:10.3934/math.2021496
[10] Dinu, R.; Ene, V.; Hibi, T., On the regularity of join-meet ideals of modular lattices, arXiv preprint arXiv:1806.05200 (2018)
[11] Duval, A. M.; Goeckner, B.; Klivans, C. J.; Martin, J. L., A non-partitionable Cohen-Macaulay simplicial complex, Adv. Math, 299, 381-395 (2016) · Zbl 1341.05256 · doi:10.1016/j.aim.2016.05.011
[12] Eisenbud, D., Commutative Algebra: With a View Toward Algebraic Geometry, 150 (2013), New York: Springer, New York
[13] Fakhari, S. S., On the Stanley depth of powers of edge ideals, J. Algebra, 489, 463-474 (2017) · Zbl 1388.13031
[14] Faridi, S.; Hersey, B., Resolutions of monomial ideals of projective dimension 1, Commun. Algebra, 45, 12, 5453-5464 (2017) · Zbl 1386.13037 · doi:10.1080/00927872.2017.1313422
[15] Fouli, L.; Morey, S., A lower bound for depths of powers of edge ideals, J. Algebraic Comb, 42, 3, 829-848 (2015) · Zbl 1330.05174 · doi:10.1007/s10801-015-0604-3
[16] Grayson, D. R.; Stillman, M. E., Macaulay2, a software system for research in algebraic geometry (2002)
[17] Hà, H. T.; Van Tuyl, A., Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Comb, 27, 2, 215-245 (2008) · Zbl 1147.05051 · doi:10.1007/s10801-007-0079-y
[18] Herzog, J., A generalization of the Taylor complex construction, Commun. Algebra, 35, 5, 1747-1756 (2007) · Zbl 1121.13013 · doi:10.1080/00927870601139500
[19] Herzog, J.; Takayama, Y., Resolutions by mapping cones, Homol. Homotopy Appl., 4, 2, 277-294 (2002) · Zbl 1028.13008 · doi:10.4310/HHA.2002.v4.n2.a13
[20] Herzog, J.; Vladoiu, M.; Zheng, X., How to compute the Stanley depth of a monomial ideal, J. Algebra, 322, 9, 3151-3169 (2009) · Zbl 1186.13019 · doi:10.1016/j.jalgebra.2008.01.006
[21] Hirano, A.; Matsuda, K., Matching numbers and dimension edge ideals, Graphs Comb, 37, 3, 761-774 (2021) · Zbl 1470.05128 · doi:10.1007/s00373-021-02277-x
[22] Iqbal, Z.; Ishaq, M.; Aamir, M., Depth and Stanley depth of the edge ideals of square paths and square cycles, Commun. Algebra, 46, 3, 1188-1198 (2018) · Zbl 1421.13004 · doi:10.1080/00927872.2017.1339068
[23] Ishaq, M., Values and bounds for the Stanley depth, Carpathian J. Math, 27, 2, 217-224 (2011) · Zbl 1249.13017
[24] Ishaq, M.; Qureshi, M. I., Upper and lower bounds for the Stanley depth of certain classes of monomial ideals and their residue class rings, Commun. Algebra, 41, 3, 1107-1116 (2013) · Zbl 1278.13025 · doi:10.1080/00927872.2011.630708
[25] Kalai, G.; Meshulam, R., Intersections of Leray complexes and regularity of monomial ideals, J. Comb. Theory, Ser. A, 113, 1586-1592 (2006) · Zbl 1105.13026
[26] Katzman, M., Characteristic-independence of Betti numbers of graph ideals, J. Comb. Theory, Ser. A, 113, 3, 435-454 (2006) · Zbl 1102.13024
[27] Morey, S., Depths of powers of the edge ideal of a tree, Commun. Algebra, 38, 11, 4042-4055 (2010) · Zbl 1210.13020 · doi:10.1080/00927870903286900
[28] Morey, S.; Villarreal, R. H., Edge ideals: Algebraic and combinatorial properties, Prog. Commut. Algebra, 1, 85-126 (2012) · Zbl 1246.13001
[29] Olteanu, A., Edge ideals of squares of trees, Osaka J. Math, 59, 2, 369-386 (2022) · Zbl 1487.05280
[30] Rauf, A., Depth and Stanley depth of multigraded modules, Commun. Algebra, 38, 2, 773-784 (2010) · Zbl 1193.13025 · doi:10.1080/00927870902829056
[31] Stanley, R. P., Linear Diophantine equations and local cohomology, Invent. Math, 68, 2, 175-193 (1982) · Zbl 0516.10009
[32] Ştefan, A., Stanley depth of powers of the path ideal, arXiv preprint arXiv:1409.6072 (2014)
[33] Uribe-Paczka, M. E.; Van Tuyl, A., The regularity of some families of circulant graphs, Mathematics, 7, 7, 657 (2019) · doi:10.3390/math7070657
[34] Villarreal, R. H., Monomial Algebras, 238 (2001), New York: Marcel Dekker, Inc, New York · Zbl 1002.13010
[35] Woodroofe, R., Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra, 6, 2, 287-304 (2014) · Zbl 1330.13040
[36] Zheng, X., Resolutions of facet ideals, Commun. Algebra, 32, 2, 2301-2324 (2004) · Zbl 1089.13014 · doi:10.1081/AGB-120037222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.