×

Source monitoring and multivariate signal detection theory, with a model for selection. (English) Zbl 1062.91061

Summary: Participants in source monitoring studies, in addition to determining whether an item is old or new, also discriminate the source of the item, such as whether the item was presented in a male or female voice. This article shows how to apply multivariate Signal Detection Theory (SDT) to source monitoring. An interesting aspect of one version of the source monitoring procedure, from the perspective of multivariate SDT, is that it involves a type of selection, in that a discrimination response is observed only if the detection decision is that an item is old. If the selection is ignored, then the estimate of the discrimination parameter can be biased; the nature and magnitude of the bias are illustrated. A bivariate signal detection model that recognizes selection is presented and its application is illustrated. The approach to source monitoring via multivariate SDT provides new results that are informative about underlying psychological processes.

MSC:

91E30 Psychophysics and psychophysiology; perception
94A13 Detection theory in information and communication theory

Software:

Stata; aML; LIMDEP
Full Text: DOI

References:

[1] Agresti, A. (2002). Categorical data analysis; Agresti, A. (2002). Categorical data analysis · Zbl 1018.62002
[2] Ashby, F. G. (Ed.) (1992). Multidimensional models of perception and cognition; Ashby, F. G. (Ed.) (1992). Multidimensional models of perception and cognition
[3] Ashby, F. G.; Townsend, J. T., Varieties of perceptual independence, Psychological Review, 93, 154-179 (1986)
[4] Ashford, J. R.; Sowden, R. R., Multivariate probit analysis, Biometrics, 26, 535-546 (1970)
[5] Banks, W. P., Recognition and source memory as multivariate decision processes, Psychological Science, 11, 271-277 (2000)
[6] Batchelder, W. H.; Riefer, D. M., Multinomial processing models of source monitoring, Psychological Review, 97, 548-564 (1990)
[7] Batchelder, W. H.; Riefer, D. M., Theoretical and empirical review of multinomial process tree modeling, Psychonomic Bulletin & Review, 6, 57-86 (1999)
[8] Bayen, U. J.; Murnane, K.; Erdfelder, E., Source discrimination, item detection, and multinomial models of source monitoring, Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 197-215 (1996)
[9] Bock, R. D.; Gibbons, R., High dimensional multivariate probit analysis, Biometrics, 52, 1183-1194 (1996) · Zbl 0925.62193
[10] Bollen, K. A., Structural equations with latent variables (1989), Wiley: Wiley New York · Zbl 0731.62159
[11] Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds.), Testing structural equation models; Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds.), Testing structural equation models
[12] Burnham, K. P.; Anderson, D. R., Model selection and multimodel inference: A practical information-theoretic approach (2002), Springer: Springer New York · Zbl 1005.62007
[13] DeCarlo, L. T. (2000). An extension of signal detection theory via finite mixtures of generalized linear modelshttp://www.columbia.edu/ ld208; DeCarlo, L. T. (2000). An extension of signal detection theory via finite mixtures of generalized linear modelshttp://www.columbia.edu/ ld208
[14] DeCarlo, L. T., Signal detection theory with finite mixture distributionsTheoretical developments with applications to recognition memory, Psychological Review, 109, 710-721 (2002)
[15] DeCarlo, L. T. (in press). An application of signal detection theory with finite mixture distributions to source discrimination. Journal of Experimental Psychology: Learning, Memory, and Cognition; DeCarlo, L. T. (in press). An application of signal detection theory with finite mixture distributions to source discrimination. Journal of Experimental Psychology: Learning, Memory, and Cognition
[16] Greene, W. H. (1998). Limdep version 7.0 user’s manual; Greene, W. H. (1998). Limdep version 7.0 user’s manual
[17] Greene, W. H., Econometric analysis (2000), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ
[18] Hilford, A.; Glanzer, M.; Kim, K.; DeCarlo, L. T., Theories of source memoryROC analysis, Journal of Experimental Psychology: General, 131, 494-570 (2002)
[19] Hu, L.-T; Bentler, P. M., Cutoff criteria for fit indexes in covariance structure analysisConventional criteria versus new alternatives, Structural Equation Modeling, 6, 1-55 (1999)
[20] Johnson, M. K.; Hashtroudi, S.; Lindsay, D. S., Source monitoring, Psychological Bulletin, 114, 3-28 (1993)
[21] Kinchla, R. A., Comments on Batchelder and Riefer’s multinomial model for source monitoring, Psychological Review, 101, 166-171 (1994)
[22] Kotz, S., Balakrishnan, N., & Johnson, N.L. (2000). Continuous multivariate distributionsModels and applications; Kotz, S., Balakrishnan, N., & Johnson, N.L. (2000). Continuous multivariate distributionsModels and applications · Zbl 0946.62001
[23] Lillard, L. A.; Panis, C. W.A, aML user’s guide and reference manual (2000), EconWare Inc: EconWare Inc Los Angeles, CA
[24] Macmillan, N. A.; Creelman, C. D., Detection theory: A user’s guide (1991), Cambridge University Press: Cambridge University Press New York
[25] Maddala, G. S., Limited-dependent and qualitative variables in econometrics (1983), Cambridge University Press: Cambridge University Press New York · Zbl 0527.62098
[26] Mather, M.; Johnson, M. K.; De Leonardis, D. M., Stereotype reliance in source monitoringAge differences and neuropsychological test correlates, Cognitive Neuropsychology, 16, 437-458 (1999)
[27] Muthén, B. O., Latent variable structural equation modeling with categorical data, Journal of Econometrics, 22, 43-65 (1983)
[28] Muthén, B. O., A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators, Psychometrika, 49, 115-132 (1984)
[29] Qin, J.; Raye, C. L.; Johnson, M. K.; Mitchell, K. J., Source ROCs are (typically) curvilinearComment on Yonelinas (1999), Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 1110-1115 (2001)
[30] Slotnick, S. D.; Klein, S. A.; Dodson, C. S.; Shimamura, A. P., An analysis of signal detection and threshold models of source memory, Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1499-1517 (2000)
[31] Snodgrass, J. G.; Vanderwart, M., A standardized set of 260 picturesNorms for name agreement, image agreement, familiarity, and visual complexity, Journal of Experimental Psychology: Human Learning and Memory, 6, 174-215 (1980)
[32] StataCorp. (1999). Stata statistical software; StataCorp. (1999). Stata statistical software
[33] Steiger, J. H., Structural model evaluation and modificationAn interval estimation approach, Multivariate Behavioral Research, 25, 173-180 (1990)
[34] Steiger, J. H., A note on multiple sample extensions of the RMSEA fit index, Structural Equation Modeling, 5, 411-419 (1998)
[35] Tanner, W. P., Theory of recognition, Journal of the Acoustical Society of America, 28, 882-888 (1956)
[36] Wickens, T. D., Maximum-likelihood estimation of a multivariate Gaussian rating model with excluded data, Journal of Mathematical Psychology, 36, 213-234 (1992) · Zbl 0746.62104
[37] Yonelinas, A. P., The contribution of recollection and familiarity to recognition and source-memory judgmentsA formal dual-process model and an analysis of receiver operating characteristics, Journal of Experimental Psychology: Learning, Memory, & Cognition, 25, 1415-1434 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.