×

Analysis of dislocation nucleation from a crystal surface based on the Peierls–Nabarro dislocation model. (English) Zbl 1077.74523

Summary: Dislocation nucleation from a stressed crystal surface is analyzed based on the Peierls–Nabarro dislocation model. The variational boundary integral approach is used to obtain the profiles of the embryonic dislocations in various three-dimensional nucleation configurations. The stress-dependent activation energies required to activate dislocations from their stable to unstable saddle point configurations are determined. Compared to previous analyses of this type of problem based on continuum elastic dislocation theory, the present analysis eliminates the uncertain core cutoff parameter by allowing for the existence of an extended dislocation core as the embryonic dislocation evolves. Moreover, atomic information can be incorporated to reveal the dependence of the nucleation process on the profile of the atomic interlayer potential as compared to continuum elastic dislocation theory in which only elastic constants and Burgers vector are relevant. Finally, the presented methodology can also be readily used to study dislocation nucleation from the surface heterogeneities such as cracks, steps, and quantum structures of electronic devices.

MSC:

74E15 Crystalline structure
74A60 Micromechanical theories
82D25 Statistical mechanics of crystals
Full Text: DOI

References:

[1] Anderson, P. M.; Rice, J. R., The stress field and energy of a three-dimensional dislocation loop at a crack tip, J. Mech. Phys. Solids, 35, 6, 743-769 (1987) · Zbl 0639.73033
[2] Bacon, D.J., Groves, P.P., 1970. The dislocation in a semi-infinite isotropic medium, In: Simmemens, J.A., De Wit R., Bullough, R. (Eds.), Fundamental Aspects of Dislocation Theory, Vol. 1. National Bureau of Standards Special Publication 317, US Government Printing Office, Washington, DC, pp. 35-45.; Bacon, D.J., Groves, P.P., 1970. The dislocation in a semi-infinite isotropic medium, In: Simmemens, J.A., De Wit R., Bullough, R. (Eds.), Fundamental Aspects of Dislocation Theory, Vol. 1. National Bureau of Standards Special Publication 317, US Government Printing Office, Washington, DC, pp. 35-45.
[3] Baker, S. P.; Zhang, L.; Gao, H., Effect of dislocation core spreading at interfaces on strength of thin films, J. Mater. Res., 7, 1808-1813 (2002)
[4] Beltz, G. E.; Freund, L. B., On the nucleation of dislocations at a crystal surface, Phys. Status Solidi B, 180, 2, 303-313 (1993)
[5] Beltz, G. E.; Freund, L. B., Analysis of the strained-layer critical thickness concept based on a Peierls-Nabarro model of a threading dislocation, Philos. Mag. A, 69, 1, 183-202 (1994)
[6] Brochard, S.; Beauchamp, P.; Grilhe, J., Dislocation nucleation from surface stepsatomistic simulation in aluminum, Philos. Mag. A, 80, 3, 503-524 (2000)
[7] Cottrell, A. H., Dislocations and Plastic Flow in Crystals (1953), Clarendon Press: Clarendon Press Oxford · Zbl 0052.23707
[8] Eshelby, J. D., Edge dislocations in anisotropic materials, Philos. Mag. A, 40, 903-912 (1949) · Zbl 0033.04801
[9] Eshelby, J.D., 1979. Boundary problems for dislocations. In: Nabarro, F.R.N. (Ed.), Dislocation in Solids, Vol. I. North-Holland, New York, pp. 167-221.; Eshelby, J.D., 1979. Boundary problems for dislocations. In: Nabarro, F.R.N. (Ed.), Dislocation in Solids, Vol. I. North-Holland, New York, pp. 167-221.
[10] Fitzgerald, E. A.; Watson, G. P.; Proano, R. E.; Ast, D. G.; Kirchner, P. D.; Pettit, G. D.; Woodall, J. M., Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area, J. Appl. Phys., 65, 6, 2220-2237 (1989)
[11] Freund, L. B., The mechanics of electronic materials, Int. J. Solids Struct., 37, 185-196 (2000) · Zbl 1075.74064
[12] Gao, H.; Rice, J. R., Application of 3-D weight functions. II. The stress field and energy of a shear dislocation loop at a crack tip, J. Mech. Phys. Solids, 37, 2, 155-174 (1989) · Zbl 0737.73068
[13] Gao, H.; Ozkan, C. S.; Nix, W. D.; Zimmerman, J. A.; Freund, L. B., Atomistic models of dislocation formation at crystal surface ledges in \(Si_{1−x}Ge_x/Si(100)\) heteroepitaxial thin films, Philos. Mag. A, 79, 2, 349-370 (1999)
[14] Hirth, J. P.; Lothe, J., Theory of Dislocations (1982), Wiley-Interscience: Wiley-Interscience New York
[15] Kamat, S. V.; Hirth, J. P., Dislocation injection in strained multilayer structures, J. Appl. Phys., 67, 11, 6844-6850 (1990)
[16] Kaxiras, E.; Duesbery, M. S., Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition, Phys. Rev. Lett., 70, 24, 3752-3755 (1993)
[17] Kelchner, C. L.; Plimpton, S. J.; Hamilton, J. C., Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B, 58, 17, 11085-11088 (1998)
[18] Lothe, J., Dislocations in anisotropic media, the interaction energy, Philos. Mag. A, 46, 1, 177-180 (1982)
[19] Mooney, P. M., Strain relaxation and dislocations in SiGe/Si structures, Mater. Sci. Eng. R: Reports, R17, 3, 105-146 (1996)
[20] Nabarro, F. R.N., Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59, 256-272 (1947)
[21] Nix, W. D., Mechanical properties of thin films, Metall. Trans. A, 20, 2217-2245 (1989)
[22] Peierls, R. E., The size of a dislocation, Proc. Phys. Soc., 52, 34-37 (1940)
[23] Rice, J. R., Dislocation nucleation from a crack tipan analysis based on the Peierls concept, J. Mech. Phys. Solids, 40, 2, 239-271 (1992)
[24] Rice, J. R.; Beltz, G. E., The activation energy for dislocation nucleation at a crack, J. Mech. Phys. Solids, 42, 2, 333-360 (1994) · Zbl 0800.73345
[25] Rose, J. H.; Ferrante, J.; Smith, J. R., Universal binding energy curves for metals and bimetallic interfaces, Phys. Rev. Lett., 47, 9, 675-678 (1981)
[26] Schoeck, G., Dislocation emission from crack tips as a variational problem of the crack energy, J. Mech. Phys. Solids, 44, 3, 413-437 (1996)
[27] Schoeck, G., Peierls energy of dislocationsa critical assessment, Phys. Rev. Lett., 82, 11, 2310-2313 (1999)
[28] Schoeck, G., The core structure, recombination energy and Peierls energy for dislocations in Al, Philos. Mag. A, 81, 5, 1161-1176 (2001)
[29] Schoeck, G.; Pueschl, W., The formation of dislocation loops at crack tips in three dimensions, Philos. Mag. A, 64, 4, 931-949 (1991)
[30] Vitek, V., Intrinsic stacking faults in body-centered cubic crystals, Philos. Mag. A, 18, 773-786 (1968)
[31] Wagner, G., 1999. The film surface as the site for spontaneous nucleation of dislocation half-loops in strained heteroepitaxial systems. Phys. Status Solidi A 173 (2), 385-403.; Wagner, G., 1999. The film surface as the site for spontaneous nucleation of dislocation half-loops in strained heteroepitaxial systems. Phys. Status Solidi A 173 (2), 385-403.
[32] Xu, G., A variational boundary integral method for the analysis of three-dimensional cracks of arbitrary geometry in anisotropic elastic solids, J. Appl. Mech., 67, 2, 403-408 (2000) · Zbl 1110.74768
[33] Xu, G., 2001. Unpublished research note.; Xu, G., 2001. Unpublished research note.
[34] Xu, G., Energetics of nucleation of half dislocation loops from a surface crack, Philos. Mag., 82, 3177-3185 (2002)
[35] Xu, G.; Argon, A. S., Homogeneous nucleation of dislocation loops under stress in perfect crystals, Philos. Mag. Lett., 80, 9, 605-611 (2000)
[36] Xu, G.; Ortiz, M., A variational boundary integral method for the analysis of 3-D cracks of arbitrary geometry modeled as continuous distributions of dislocation loops, Int. J. Numer. Meth. Eng., 36, 21, 3675-3701 (1993) · Zbl 0796.73067
[37] Xu, G.; Argon, A. S.; Ortiz, M., Nucleation of dislocations from crack tips under mixed modes of loadingimplications for brittle against ductile behaviour of crystals, Philos. Mag. A, 72, 2, 415-451 (1995)
[38] Xu, G.; Argon, A. S.; Ortiz, M., Critical configurations for dislocation nucleation from crack tips, Philos. Mag. A, 75, 2, 341-367 (1997)
[39] Zunger, A., Semiconductor quantum dots, MRS Bull., 23, 2, 15-17 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.