×

Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces. (English) Zbl 1049.74770

Summary: A phenomenological traction-separation law that describes the cohesion of an inclusion/matrix interface in the presence of hydrogen is suggested such that the associated reversible work of separation during fast decohesion is exactly equal to that predicted by the thermodynamic theory of J. P. Hirth and J. R. Rice [Metall. Trans. A 11, 1501–1511 (1980)] and Rice and Wang [Mater. Sci. Eng. A 107, 23 (1989)] in the corresponding limit. The law is used to study interfacial debonding around an elastic inclusion imbedded in an elastoplastically deforming matrix while transient hydrogen transport takes place in the matrix, the inclusion, and the opening interfacial channel. Interfacial separation is modeled through cohesive elements and is simulated incrementally within the updated Lagrangian formulation scheme used to model bulk material elastoplasticity. For material data pertaining to nickel-base alloy 690, the numerical results indicate that both hydrogen-induced reduction of interfacial cohesion and matrix-softening lead to a reduction of stress at which void nucleation commences relatively to case of a hydrogen-free material. On the other hand, there is a competitive effect on the void nucleation strain: while cohesion reduction decreases this strain, matrix softening increases it, and its final value depends on the outcome of this competition. Thus the suggested model of the hydrogen effect on cohesion, although calibrated in accordance with the fast-separation limit (small cohesion reduction) of the Hirth-Rice-Wang theory, does allow for internal material failure with a clear and substantial effect on the external macroscopic loads.

MSC:

74R99 Fracture and damage
74A50 Structured surfaces and interfaces, coexistent phases
74C99 Plastic materials, materials of stress-rate and internal-variable type
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Baranowski, B., 1978. Metal hydrogen systems at high hydrogen pressures. In: G. Alefeld, J. Volkl (Eds), Hydrogen in Metals I, Topics in Applied Physics, Vol. 29, Springer, Berlin, pp. 57-200.; Baranowski, B., 1978. Metal hydrogen systems at high hydrogen pressures. In: G. Alefeld, J. Volkl (Eds), Hydrogen in Metals I, Topics in Applied Physics, Vol. 29, Springer, Berlin, pp. 57-200.
[2] Baranowski, B.; Majchrzak, T. B.; Flanagan, J., The volume increase of f.c.c. metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents, J. Phys. F Metal Phys., 1, 258-261 (1971)
[3] Birnbaum, H. K., Hydrogen effects on deformation-relation between dislocation behavior and the macroscopic stress-strain behavior, Scr. Metall., 31, 149-153 (1994)
[4] Birnbaum, H.K., 2002. Private communication.; Birnbaum, H.K., 2002. Private communication.
[5] Birnbaum, H.K., Robertson, I.M., Sofronis, P., Teter, D., 1997. Mechanisms of hydrogen related fracture—a review. In: Magnin, T. (Ed.), Corrosion Deformation Interactions CDI’96 (Second International Conference, Nice, France, 1996). The Institute of Materials, Great Britain, pp. 172-195.; Birnbaum, H.K., Robertson, I.M., Sofronis, P., Teter, D., 1997. Mechanisms of hydrogen related fracture—a review. In: Magnin, T. (Ed.), Corrosion Deformation Interactions CDI’96 (Second International Conference, Nice, France, 1996). The Institute of Materials, Great Britain, pp. 172-195.
[6] Birnbaum, H. K.; Sofronis, P., Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture, Mater. Sci. Eng., A176, 191-202 (1994)
[7] Bond, G. M.; Robertson, I. M.; Birnbaum, H. K., The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys, Acta Metall., 35, 2289-2296 (1987)
[8] Bond, G. M.; Robertson, I. M.; Birnbaum, H. K., Effects of hydrogen on deformation and fracture processes in high-purity aluminum, Acta Metall., 36, 2193-2197 (1988)
[9] Briant, C. L.; Feng, H. C.; McMahon, C. J., Embrittlement of a 5 pct nickel high strength steel by impurities and their effects on hydrogen-induced cracking, Metall. Trans. 9A, 625-633 (1978)
[10] Cahn, J.W., 1983. Nonequilibrium surface and interface thermodynamics. In: Latanision, R.M., Pickens, J.R. (Eds.), Atomistics of Fracture (Proceedings of a NATO advanced institute on atomistics of fracture). Plenum Press, New York, pp. 427-431.; Cahn, J.W., 1983. Nonequilibrium surface and interface thermodynamics. In: Latanision, R.M., Pickens, J.R. (Eds.), Atomistics of Fracture (Proceedings of a NATO advanced institute on atomistics of fracture). Plenum Press, New York, pp. 427-431.
[11] Chen, X.; Foecke, T.; Lii, M.; Katz, Y.; Gerberich, W. W., The role of stress state in Fe-Si Single crystals, Eng. Fract. Mech., 35, 997-1017 (1990)
[12] Chen, X.; Gerberich, W. W., The kinetics and micromechanics of hydrogen assisted cracking in Fe-3 Pct Si Single crystals, Metall. Trans., 22A, 59-70 (1991)
[13] Chen, S. H.; Katz, Y.; Gerberich, W. W., Crack tip fields and fracture microplasticity in hydrogen-assisted cracking of Fe-3wt
[14] Christmann, K.; Schober, O.; Ertl, G.; Neumann, M., Adsorption of hydrogen on nickel single crystal surfaces, J. Chem. Phys., 60, 4528-4540 (1974)
[15] Cotterell, B.; Rice, J. R., Slightly curved or kinked cracks, Int. J. Fract., 16, 155-169 (1980)
[16] Daw, M. S.; Baskes, M. I., Embedded-atom methodderivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29, 6443-6453 (1984)
[17] Eastman, J., Matsumoto, T., Narita, N., Heubaum, N., Birnbaum, H.K., 1981. Hydrogen effects in nickel embrittlement or enhanced ductility? In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen in Metals. Metallurgical Society of AIME, New York, pp. 397-409.; Eastman, J., Matsumoto, T., Narita, N., Heubaum, N., Birnbaum, H.K., 1981. Hydrogen effects in nickel embrittlement or enhanced ductility? In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen in Metals. Metallurgical Society of AIME, New York, pp. 397-409.
[18] Enmgelmann, H.J., Mummert, K., Schwarz, S., Uhlemann, M., 1995. Influence of cathodic and corrosive hydrogen on the cracking behavior of austenitic iron and nickel base alloys. In: Turnbull A. (Ed.), Hydrogen Transport and Cracks in Metals. Cambridge University Press, Cambridge, pp. 27-37.; Enmgelmann, H.J., Mummert, K., Schwarz, S., Uhlemann, M., 1995. Influence of cathodic and corrosive hydrogen on the cracking behavior of austenitic iron and nickel base alloys. In: Turnbull A. (Ed.), Hydrogen Transport and Cracks in Metals. Cambridge University Press, Cambridge, pp. 27-37.
[19] Geng, W. T.; Freeman, A. J.; Wu, R.; Geller, C. B.; Raynolds, J. E., Embrittling and strengthening of hydrogen, boron, and phosphorus on a \(Σ 5\) nickel grain boundary, Phys. Rev. B, 60, 7149-7155 (1999)
[20] Gerberich, W. W.; Chen, Y. T., Hydrogen-controlled cracking-an approach to threshold stress intensity, Metall. Trans., 6A, 271-278 (1975)
[21] Gerberich, W.W., Foecke, T.J., 1990. Hydrogen enhanced decohesion in Fe-Si Single crystals: implications to modeling of thresholds. In: Moody, N.R., Thompson, A.W. (Eds.), Hydrogen Effects on Materials Behavior. TMS, Warendale, PA, 687-701.; Gerberich, W.W., Foecke, T.J., 1990. Hydrogen enhanced decohesion in Fe-Si Single crystals: implications to modeling of thresholds. In: Moody, N.R., Thompson, A.W. (Eds.), Hydrogen Effects on Materials Behavior. TMS, Warendale, PA, 687-701.
[22] Gerberich, W. W.; Oriani, R. A.; Lii, M.-J.; Chen, X.; Foecke, T., The necessity of both plasticity and brittleness in the fracture thresholds of iron, Philos. Mag., 63, 363-376 (1991)
[23] Gumbsch, P., Brittle fracture processes modeled at the atomic scale, Z. Metall., 87, 341-348 (1996)
[24] Gumbsch, P., Atomistic modeling of diffusion-controlled interfacial decohesion, Mater. Sci. Eng., A260, 72-79 (1999)
[25] Hirth, J.P., 1990. Hydrogen influenced plasticinstability and ductile fracture in steels. In: Moody, N.R., Thompson, A.W. (Eds.), Hydrogen Effects on Material Behavior. TMS, Warendale, PA, pp. 677-689.; Hirth, J.P., 1990. Hydrogen influenced plasticinstability and ductile fracture in steels. In: Moody, N.R., Thompson, A.W. (Eds.), Hydrogen Effects on Material Behavior. TMS, Warendale, PA, pp. 677-689.
[26] Hirth, J.P., Johnson, H.H., 1983. On the transport of hydrogen by dislocations. In: Latanision, R.A., Pickens, J.R. (Eds.), Atomistics of Fracture. Plenum Press, New York, pp. 771-785.; Hirth, J.P., Johnson, H.H., 1983. On the transport of hydrogen by dislocations. In: Latanision, R.A., Pickens, J.R. (Eds.), Atomistics of Fracture. Plenum Press, New York, pp. 771-785.
[27] Hirth, J. P.; Lothe, J., Theory of Dislocations (1982), Wiley: Wiley New York
[28] Hirth, J. P.; Rice, J. R., On the thermodynamics of adsorption at interfaces as it influences decohesion, Metall. Trans., 11A, 1501-1511 (1980)
[29] Johnson, H. H.; Hirth, J. P., Internal hydrogen supersaturation produced by dislocation transport, Metall. Trans., 7A, 1543-1548 (1976)
[30] Johnson, H.H., Lin, R.W., 1981. Hydrogen and deuterium trapping in iron. In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen Effects in Metals. Metallurgical Society of AIME, New York, pp. 3-23.; Johnson, H.H., Lin, R.W., 1981. Hydrogen and deuterium trapping in iron. In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen Effects in Metals. Metallurgical Society of AIME, New York, pp. 3-23.
[31] Jokl, M. L.; Vitek, V.; McMahon, C. J., A microscopic theory of brittle fracture in deformable solidsa relation between ideal work to fracture and plastic work, Acta Metall., 28, 1479-1488 (1980)
[32] Knott, J.F., 1990. Notch and stress effects on fracture. In: Moody, N.R., Thompson, A.W. (Eds.), Hydrogen Effects on Material Behavior. TMS, Warendale, PA, pp. 661-675.; Knott, J.F., 1990. Notch and stress effects on fracture. In: Moody, N.R., Thompson, A.W. (Eds.), Hydrogen Effects on Material Behavior. TMS, Warendale, PA, pp. 661-675.
[33] Krom, A. H.M.; Koers, R. W.J.; Baker, A., Hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids, 47, 971-992 (1999) · Zbl 0974.74561
[34] Lapujoulade, J.; Neil, K. S., Hydrogen adsorption on Ni (100), Surf. Sci., 35, 288-301 (1973)
[35] Lee, T. C.; Robertson, I. M.; Birnbaum, H. K., HVEM in situ deformation study of nickel doped with sulfur, Acta Metall., 37, 407-415 (1989)
[36] Lessar, J. F.; Gerberich, W. W., Grain size effects in hydrogen-assisted cracking, Metall. Trans., 7A, 953-960 (1976)
[37] Lufrano, J.; Sofronis, P.; Birnbaum, H. K., Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip, J. Mech. Phys. Solids, 44, 179-205 (1996)
[38] Lufrano, J.; Sofronis, P.; Birnbaum, H. K., Elastically accommodated hydride formation and embrittlement, J. Mech. Phys. Solids, 46, 1497-1520 (1998) · Zbl 1056.74558
[39] Lufrano, J.; Sofronis, P.; Symons, D., Hydrogen transport and large strain elastoplasticity near a notch in alloy X-750, Eng. Fract. Mech., 59, 827-845 (1998)
[40] McMahon, C. J., Hydrogen-induced intergranular fracture of steels, Eng. Fract. Mech., 68, 773-788 (2001)
[41] Meyers, S. M.; Baskes, M. I.; Birnbaum, H. K., Hydrogen interactions with defects in crystalline solids, Rev. Mod. Phys., 64, 559-617 (1992)
[42] Mishin, Y.; Sofronis, P.; Bassani, J. L., Thermodynamic and kinetic aspects of interfacial decohesion, Acta Mater., 50, 3609-3622 (2002)
[43] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525-531 (1987) · Zbl 0626.73010
[44] Nutt, S. R.; Needleman, A., Void nucleation at fiber ends in Al-SiC composites, Scr. Metall., 21, 705-710 (1987)
[45] Onyewuenyi, O. A.; Hirth, J. P., Plastic instability in U-notched bend specimens of spheroidized AISI 1090 steel, Metall. Trans., 13A, 2209-2218 (1982)
[46] Onyewuenyi, O. A.; Hirth, J. P., Effects of hydrogen on notch ductility and fracture in spheroidized AISI 1090 steel, Metall. Trans., 14A, 259-269 (1983)
[47] Oriani, R. A., The diffusion and trapping of hydrogen in steel, Acta Metall., 18, 147-157 (1970)
[48] Oriani, R. A.; Josephic, P. H., Equilibrium aspects of hydrogen-induced cracking of steels, Acta Metall., 22, 1065-1074 (1974)
[49] Oriani, R. A.; Josephic, P. H., Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel, Acta Metall., 25, 979-988 (1977)
[50] Oriani, R. A.; Josephic, P. H., Hydrogen enhanced load relaxation in a deformed medium-carbon steel, Acta Metall., 27, 997-1005 (1979)
[51] Peisl, H., 1978. Lattice strains due to hydrogen in metals. In: G. Alefeld, J. Volkl (Eds), Hydrogen in Metals I, Topics in Applied Physics, Vol. 28, Springer, Berlin, pp. 53-74.; Peisl, H., 1978. Lattice strains due to hydrogen in metals. In: G. Alefeld, J. Volkl (Eds), Hydrogen in Metals I, Topics in Applied Physics, Vol. 28, Springer, Berlin, pp. 53-74.
[52] Rajan, V. B.; Hirth, J. P., Effect of hydrogen on four-point bend tests of U-notched AISI 1090 steel, Metall. Trans., 18A, 335-340 (1987)
[53] Rice, J.R., 1976. Hydrogen and interfacial cohesion. In: Effect of Hydrogen on Behavior of Materials. TMS-AIME, New York, pp. 455-466.; Rice, J.R., 1976. Hydrogen and interfacial cohesion. In: Effect of Hydrogen on Behavior of Materials. TMS-AIME, New York, pp. 455-466.
[54] Rice, J. R.; Wang, J-S., Embrittlement of interfaces by solute segregation, Mater. Sci. Eng. A, 107, 23-40 (1989)
[55] Robertson, I. M., The effect of hydrogen on dislocation dynamics, Eng. Fract. Mech., 68, 671-692 (2001)
[56] Robertson, I. M.; Birnbaum, H. K., An HVEM study of hydrogen effects on the deformation and fracture of nickel, Acta Metall., 34, 353-366 (1986)
[57] Rozenak, P.; Robertson, I. M.; Birnbaum, H. K., HEVM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel, Acta Metall., 38, 2031-2040 (1990)
[58] Sato, A.; Meshii, M., Solid solution softening and solid solution hardening, Acta Metall., 21, 753-768 (1973)
[59] Sofronis, P.; Birnbaum, H. K., Mechanics of the hydrogen-dislocation-impurity interaction—I. Increasing shear modulus, J. Mech. Phys. Solids, 43, 49-90 (1995) · Zbl 0870.73060
[60] Sofronis, P.; McMeeking, R. M., Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids, 37, 317-350 (1989)
[61] Sofronis, P.; Liang, Y.; Aravas, N., Hydrogen induced shear localization in metals and alloys, Eur. J. Mech. A-Solids, 20, 857-872 (2001) · Zbl 1051.74040
[62] Sofronis, P., Taha, A., 2000. Micromechanical modeling of hydrogen transport—A review. In: Kane, R.D. (Ed.), Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipments, and Structures, ASTM STP 1401. American Society for Testing and Materials, West Conshohocken, PA, pp. 70-103.; Sofronis, P., Taha, A., 2000. Micromechanical modeling of hydrogen transport—A review. In: Kane, R.D. (Ed.), Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipments, and Structures, ASTM STP 1401. American Society for Testing and Materials, West Conshohocken, PA, pp. 70-103.
[63] Symons, D., The effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690, Metall. Trans., 29A, 1265-1277 (1998)
[64] Symons, D.; Thomspon, A. W., The effect of hydrogen on the fracture of alloy X-750, Metall. Trans., 27A, 101-110 (1996)
[65] Symons, D.; Thomspon, A. W., The effect of hydrogen on the fracture toughness of alloy X-750, Metall. Trans., 28A, 817-823 (1997)
[66] Tabata, T.; Birnbaum, H. K., Direct observations of the effect of hydrogen on the behavior of dislocations in iron, Scr. Metall., 17, 947-950 (1983)
[67] Tabata, T.; Birnbaum, H. K., Direct observations of hydrogen enhanced crack propagation in iron, Scr. Metall., 17, 947-950 (1984)
[68] Taha, A.; Sofronis, P., A micromechanics approach to the study of hydrogen transport and embrittlement, Eng. Fract. Mech., 68, 803-837 (2001)
[69] Takeda, Y.; McMahon, C. J., Strain controlled vs stress controlled hydrogen induced fracture in a quenched and tempered steel, Metall. Trans., 12A, 1255-1266 (1981)
[70] Tetelman, A.S., 1974. Recent developments in classical (internal) hydrogen embrittlement. In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen in Metals. ASM, Cleveland, OH, pp. 17-34.; Tetelman, A.S., 1974. Recent developments in classical (internal) hydrogen embrittlement. In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen in Metals. ASM, Cleveland, OH, pp. 17-34.
[71] Teter, D. F.; Robertson, I. M.; Birnbaum, H. K., The effects of hydrogen on the deformation and fracture of beta-titanium, Acta Mater., 49, 4313-4323 (2001)
[72] Thomas, G.J., 1980. Hydrogen trapping in FCC metals. In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen Effects in Metals. Proceedings of the Third International Conference on Effect of Hydrogen on Behavior of Materials. The Metallurgical Society of AIME, pp. 77-84.; Thomas, G.J., 1980. Hydrogen trapping in FCC metals. In: Bernstein, I.M., Thompson, A.W. (Eds.), Hydrogen Effects in Metals. Proceedings of the Third International Conference on Effect of Hydrogen on Behavior of Materials. The Metallurgical Society of AIME, pp. 77-84.
[73] Tien, J. K.; Thompson, A. W.; Bernstein, I. M.; Richards, R. J., Hydrogen transport by dislocations, Metall. Trans., 7A, 821-829 (1976)
[74] Tobe, Y.; Tyson, W. R., Effect of hydrogen on yield of iron, Scr. Metall., 11, 849-852 (1977)
[75] Tong, Y.; Knott, J. F., Evidence for the discontinuity of hydrogen-assisted fracture in mild steel, Scr. Metall., 25, 1651-1656 (1991)
[76] Toyoshima, I.; Somorjai, G. A., Heats of chemisorption of \(O_2, H_2\), CO, \(CO_2, N_2\) on polycrystalline and single transition metal surfaces, Catal. Rev. Sci. Eng., 19, 105-159 (1979)
[77] Tvergaard, V., Effect of fiber debonding in a whisker-reinforced metal, Mater. Sci. Eng., A125, 203-213 (1990)
[78] Tvergaard, V.; Hutchinson, J. W., The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solids, 41, 1119-1135 (1993) · Zbl 0775.73219
[79] Unger, D. J., A mathematical analysis for impending hydrogen assisted crack propagation, Eng. Fract. Mech., 34, 657-667 (1989)
[80] Van Leeuwen, H. P.Van, The kinetics of hydrogen embrittlementa quantitative diffusion model, Eng. Fract. Mech., 6, 141-161 (1974)
[81] Xu, Y., 1999. Crack propagation associated with stress-assisted diffusion of impurities under creep conditions. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA.; Xu, Y., 1999. Crack propagation associated with stress-assisted diffusion of impurities under creep conditions. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA.
[82] Xu, Y., Bassani, J.L., 1997. Time dependent interfacial decohesion. Final Report on the DOE Council on Materials, Panel on Time Dependent Interfacial Decohesion, Great Oaks Landing, Maryland, June 24-27.; Xu, Y., Bassani, J.L., 1997. Time dependent interfacial decohesion. Final Report on the DOE Council on Materials, Panel on Time Dependent Interfacial Decohesion, Great Oaks Landing, Maryland, June 24-27.
[83] Xu, Y.; Bassani, J. L., A steady state model for diffusion-controlled fracture, Mater. Sci. Eng., A260, 48-54 (1999)
[84] Yao, J.; Cahoon, J. R., Diffusion of hydrogen induced grain boundary fracture in high purity nickel and its alloys-enhanced hydrogen diffusion along grain boundaries, Scr. Metall., 22, 1817-1820 (1988)
[85] Young, G. A.; Scully, J. R., Evidence that carbide precipitation produces hydrogen traps in Ni-17Cr-8Fe alloys, Scr. Metall., 36, 713-719 (1997)
[86] Zapffe, C.A., Sims, C.E., 1941. Hydrogen embrittlement, internal stress and defects in steels. Trans. AIME, Vol. 145, 225-271.; Zapffe, C.A., Sims, C.E., 1941. Hydrogen embrittlement, internal stress and defects in steels. Trans. AIME, Vol. 145, 225-271.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.