×

Stationary structures in two-dimensional continuous Heisenberg ferromagnetic spin system. (English) Zbl 1038.35133

Summary: Stationary structures in a classical isotropic two-dimensional continuous Heisenberg ferromagnetic spin system are studied in the framework of the \((2+1)\)-dimensional Landau-Lifshitz model. It is established that in the case of \(\vec S(\vec r,t)=\vec S(\vec r-\vec v t)\) the Landau-Lifshitz equation is closely related to the Ablowitz-Ladik hierarchy. This relation is used to obtain soliton structures, which are shown to be caused by joint action of nonlinearity and spatial dispersion, contrary to the well-known one-dimensional solitons which exist due to competition of nonlinearity and temporal dispersion. We also present elliptical quasiperiodic stationary solutions of the stationary \((2+1)\)-dimensional Landau-Lifshitz equation.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
82D40 Statistical mechanics of magnetic materials
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics

References:

[1] Lakshmanan, M., Phys. Lett, A61, 53-54, 1977
[2] Takhtajan, L. A., Integration of the Continuum Heisenberg Spin Chain through the Inverse Scattering Method, Phys, Lett, A64, 235-237, 1977
[3] Kosevich, A. M.; Ivanov, B. A.; Kovalev, A. S., Magnetic Solitons, Phys, Rep, 194, 117-238, 1990
[4] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C., Solitons and Nonlinear Wave Equations, 1984, London: Academic Press, London
[5] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons, 1987, Berlin: Springer-Verlag, Berlin · Zbl 0632.58004
[6] Papanicolaou, N., Duality Rotation for 2-D Classical Ferromagnets, Phys, Lett, A84, 151-154, 1981
[7] Vekslerchik, V. E., An O(3, 1) Nonlinear σ-Model and the Ablowitz-Ladik Hierarchy, J. Phys. A: Math. Gen, 27, 6299-6313, 1994 · Zbl 0844.35130
[8] Ishimori, Y., Multi-Vortex Solutions of a Two-Dimensional Nonlinear Wave Equation, Progr. Theor, Phys, 72, 33-37, 1984 · Zbl 1074.35573
[9] Lipovskii, V. D.; Shirokov, A. V., An Example of Gauge Equivalence of Multidimensional Integrable Equaitons, Funk, Analiz, 23, 65-66, 1989 · Zbl 0716.35078
[10] Ablowitz, M. J.; Ladik, J. F., Nonlinear Differential-Difference Equations, J. Math. Phys, 16, 598-603, 1975 · Zbl 0296.34062
[11] Vekslerchik, V. E., The 2D Toda Lattice and the Ablowitz-Ladik Hierarchy, Inverse Problems, 11, 463-479, 1995 · Zbl 0822.35121
[12] Vekslerchik, V. E., The Davey-Stewartson Equation and the Ablowitz-Ladik Hierarchy, Inverse Problems, 12, 1057-1074, 1996 · Zbl 0862.35113
[13] Ablowitz, M. J.; Ladik, J. F., Nonlinear Differential-Difference Equations and Fourier Analysis, J. Math. Phys, 17, 1011-1018, 1976 · Zbl 0322.42014
[14] AblowitzM J and Segur H, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981. · Zbl 0472.35002
[15] Leon J and Spire A, The Zakharov-Shabat Spectral Problem on the Semi-Line: Hilbert Formulation and Applications, J. Phys. A: Math. Gen. 34 (2001) 7359-7380; nlin.PS/0105066. · Zbl 0983.35118
[16] Gutshabash E Sh, Lipovskij V D and Nikulichev S S, Nonlinear σ-Model in a Curved Space, Gauge Equivalence, and Exact Solutions of (2 + 0)-Dimensional Integrable Equations, Theor. Math. Phys. 115 (1998), 619-638; translation from Teor. Mat. Fiz. 115 (1998), 323-348; nlin.SI/0001012. · Zbl 1113.81095
[17] Levi, D.; Benguria, R., Backlund Transformations and Nonlinear Differential-Difference Equations, Proc. Natl. Acad. Sci. US, 77, 5025-5027, 1980 · Zbl 0453.35072
[18] Levi, D., Nonlinear Differential-Difference Equations as Backlund Transformations, J. Phys. A: Math. Gen, 14, 1083-1098, 1981 · Zbl 0465.35081
[19] Shabat, A.; Yamilov, R. I., Lattice Representations of Integrable Systems, Phys, Lett, A130, 271-275, 1988
[20] Kovalev A S, Private Communication.
[21] Ahmad, S.; Chowdhury, A. R., On the Quasiperiodic Solutions to the Discrete Nonlinear Schrödinger Equation, J. Phys. A: Math. Gen, 20, 293-303, 1987 · Zbl 0663.35083
[22] Bogolyubov, N. N., A Discrete Periodic Problem for a Modified Nonlinear Korteweg-de Vries Equation, Teor, Math. Fiz, 50, 118-126, 1982 · Zbl 0494.34011
[23] Miller, P. D.; Ercolani, N. M.; Krichever, I. M.; Levermore, C. D., Finite Genus Solutions to the Ablowitz-Ladik Equations, Comm. on Pure and Appl, Math, 48, 1369-1440, 1996 · Zbl 0869.34065
[24] Vekslerchik, V. E., Finite Genus Solutions for the Ablowitz-Ladik Fierarchy, J. Phys. A: Math. Gen, 32, 4983-4994, 1999 · Zbl 0963.37064
[25] Erdelyi, A.; Magnus, W., Oberhettinger F and Tricomi F G, 1953, Toronto, London: McGraw-Hill Book Co., New York, Toronto, London · Zbl 0052.29502
[26] Mumford, D., Tata Lectures on Theta I, II, 1984, 1983, Boston: Birkhauser, Boston · Zbl 0509.14049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.