×

Shape statistics in kernel space for variational image segmentation. (English) Zbl 1035.68125

Summary: We present a variational integration of nonlinear shape statistics into a Mumford–Shah based segmentation process. The nonlinear statistics are derived from a set of training silhouettes by a novel method of density estimation which can be considered as an extension of kernel PCA to a probabilistic framework.
We assume that the training data forms a Gaussian distribution after a nonlinear mapping to a higher-dimensional feature space. Due to the strong nonlinearity, the corresponding density estimate in the original space is highly non-Gaussian.
Applications of the nonlinear shape statistics in segmentation and tracking of 2D and 3D objects demonstrate that the segmentation process can incorporate knowledge on a large variety of complex real-world shapes. It makes the segmentation process robust against misleading information due to noise, clutter and occlusion.

MSC:

68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] M.E. Leventon, W.E.L. Grimson, O. Faugeras, Statistical shape influence in geodesic active contours, in: Proceedings of Conference on Computer Vision and Pattern Recognition, Vol. 1, Hilton Head Island, SC, June 13-15, 2000, pp. 316-323.; M.E. Leventon, W.E.L. Grimson, O. Faugeras, Statistical shape influence in geodesic active contours, in: Proceedings of Conference on Computer Vision and Pattern Recognition, Vol. 1, Hilton Head Island, SC, June 13-15, 2000, pp. 316-323.
[2] D. Cremers, C. Schnörr, J. Weickert, Diffusion snakes: combining statistical shape knowledge and image information in a variational framework, in: IEEE First Workshop on Variational and Level Set Methods, Vancouver, 2001, pp. 137-144.; D. Cremers, C. Schnörr, J. Weickert, Diffusion snakes: combining statistical shape knowledge and image information in a variational framework, in: IEEE First Workshop on Variational and Level Set Methods, Vancouver, 2001, pp. 137-144.
[3] Staib, L. H.; Duncan, J. S., Boundary finding with parametrically deformable models, IEEE Trans. Pattern Anal. Mach. Intell., 14, 11, 1061-1075 (1992)
[4] Kervrann, C.; Heitz, F., A hierarchical markov modeling approach for the segmentation and tracking of deformable shapes, Graphical Models Image Process., 60, 5, 173-195 (1998)
[5] Cootes, T. F.; Breston, C.; Edwards, G.; Taylor, C. J., A unified framework for atlas matching using active appearance models, (Kuba, A.; Samal, M.; Todd-Pokropek, A., Proceedings of International Conference on Information Processing in Medical Imaging. Proceedings of International Conference on Information Processing in Medical Imaging, Lecture Notes in Computer Science, Vol. 1613 (1999), Springer: Springer Berlin), 322-333
[6] Cremers, D.; Tischhäuser, F.; Weickert, J.; Schnörr, C., Diffusion snakesintroducing statistical shape knowledge into the Mumford-Shah functional, Int. J. Comput. Vision, 50, 3, 295-313 (2002) · Zbl 1012.68785
[7] Chalmond, B.; Girard, S. C., Nonlinear modeling of scattered multivariate data and its application to shape change, IEEE Trans. Pattern Anal. Mach. Intell., 21, 5, 422-432 (1999)
[8] T. Heap, D. Hogg, Automated pivot location for the Cartesian-polar hybrid point distribution model, in: British Machine Vision Conference, Edinburgh, UK, September 1996, pp. 97-106.; T. Heap, D. Hogg, Automated pivot location for the Cartesian-polar hybrid point distribution model, in: British Machine Vision Conference, Edinburgh, UK, September 1996, pp. 97-106.
[9] T. Heap, D. Hogg, Wormholes in shape space: tracking through discontinuous changes in shape, in: International Conference on Computer Vision, Edinburgh, UK, September 1998, pp. 97-106.; T. Heap, D. Hogg, Wormholes in shape space: tracking through discontinuous changes in shape, in: International Conference on Computer Vision, Edinburgh, UK, September 1998, pp. 97-106.
[10] Cootes, T. F.; Taylor, C. J., A mixture model for representing shape variation, Image Vision Comput., 17, 8, 567-574 (1999)
[11] Hastie, D.; Stuetzle, W., Principal curves, J. Am. Stat. Assoc., 84, 502-516 (1989) · Zbl 0679.62048
[12] Mercer, J., Functions of positive and negative type and their connection with the theory of integral equations, Philos. Trans. Roy. S. London, A, 209, 415-446 (1909) · JFM 40.0408.02
[13] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1. Interscience Publishers, Inc., New York, 1953.; R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1. Interscience Publishers, Inc., New York, 1953. · Zbl 0051.28802
[14] Schölkopf, B.; Smola, A.; Müller, K.-R., Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299-1319 (1998)
[15] D. Cremers, T. Kohlberger, C. Schnörr, Nonlinear shape statistics via kernel spaces, in: B. Radig, S. Florczyk (Eds.), Pattern Recognition, Lecture Notes in Computer Science, Vol. 2191, Munich, Germany, September 2001, Springer, Berlin, pp. 269-276.; D. Cremers, T. Kohlberger, C. Schnörr, Nonlinear shape statistics via kernel spaces, in: B. Radig, S. Florczyk (Eds.), Pattern Recognition, Lecture Notes in Computer Science, Vol. 2191, Munich, Germany, September 2001, Springer, Berlin, pp. 269-276. · Zbl 1038.68666
[16] D. Cremers, T. Kohlberger, C. Schnörr, Nonlinear shape statistics in Mumford-Shah based segmentation, in: A. Heyden et al. (Eds.), Proceedings of the European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 2351, Copenhagen, May 2002, Springer, Berlin, pp. 93-108.; D. Cremers, T. Kohlberger, C. Schnörr, Nonlinear shape statistics in Mumford-Shah based segmentation, in: A. Heyden et al. (Eds.), Proceedings of the European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 2351, Copenhagen, May 2002, Springer, Berlin, pp. 93-108. · Zbl 1039.68612
[17] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42, 577-685 (1989) · Zbl 0691.49036
[18] Farin, G., Curves and Surfaces for Computer-Aided Geometric Design (1997), Academic Press: Academic Press San Diego · Zbl 0919.68120
[19] Zhu, S. C.; Yuille, A., Region competitionunifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 18, 9, 884-900 (1996)
[20] Paragios, N.; Deriche, R., Coupled geodesic active regions for image segmentation: a level set approach, (Vernon, D., Proceedings of the European Conference on Computer Vision. Proceedings of the European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 1843 (2000), Springer: Springer Berlin), 224-240
[21] Cremers, D.; Schnörr, C., Statistical shape knowledge in variational motion segmentation, Image Vision Comput., 21, 1, 77-86 (2003)
[22] D. Cremers, C. Schnörr, Motion competition: variational integration of motion segmentation and shape regularization, in: L. van Gool (Ed.), Pattern Recognition, Lecture Notes in Computer Science, Vol. 2449, Zürich, September 2002. Springer, Berlin, pp. 472-480.; D. Cremers, C. Schnörr, Motion competition: variational integration of motion segmentation and shape regularization, in: L. van Gool (Ed.), Pattern Recognition, Lecture Notes in Computer Science, Vol. 2449, Zürich, September 2002. Springer, Berlin, pp. 472-480. · Zbl 1017.68643
[23] Kass, M.; Witkin, A.; Terzopoulos, D., Snakesactive contour models, Int. J. Comput. Vision, 1, 4, 321-331 (1988)
[24] Aizerman, M. A.; Braverman, E. M.; Rozonoer, L. I., Theoretical foundations of the potential function method in pattern recognition learning, Autom. Remote Control, 25, 821-837 (1964) · Zbl 0151.24701
[25] Boser, B. E.; Guyon, I. M.; Vapnik, V. N., A training algorithm for optimal margin classifiers, (Haussler, D., Proceedings of the Fifth Annual ACM Workshop on Computer Learning Theory (1992), ACM Press: ACM Press Pittsburgh, PA), 144-152
[26] B. Moghaddam, A. Pentland, Probabilistic visual learning for object detection, in: Proceedings of IEEE International Conference on Computer Vision, Boston, MA, 1995, pp. 786-793.; B. Moghaddam, A. Pentland, Probabilistic visual learning for object detection, in: Proceedings of IEEE International Conference on Computer Vision, Boston, MA, 1995, pp. 786-793.
[27] Schölkopf, B.; Mika, S.; Smola, A.; Rätsch, G.; K.-R. Kernel, Müller, PCA pattern reconstruction via approximate pre-images, (Niklasson, L.; Boden, M.; Ziemke, T., International Conference on Artificial Neural Networks (1998), Springer: Springer Berlin, Germany), 147-152
[28] S. Romdhani, S. Gong, A. Psarrou, A multi-view non-linear active shape model using kernel pca, in: T. Pridmore, D. Elliman (Eds.), Proceedings of the British Machine Vision Conference, Vol. 2, BMVA Press, Nottingham, UK, September 1999. pp. 483-492.; S. Romdhani, S. Gong, A. Psarrou, A multi-view non-linear active shape model using kernel pca, in: T. Pridmore, D. Elliman (Eds.), Proceedings of the British Machine Vision Conference, Vol. 2, BMVA Press, Nottingham, UK, September 1999. pp. 483-492.
[29] C.J. Twining, C.J. Taylor, Kernel principal component analysis and the construction of non-linear active shape models, in: T. Cootes, C. Taylor (Eds.), Proceedings of the British Machine Vision Conference, 2001, pp. 23-32.; C.J. Twining, C.J. Taylor, Kernel principal component analysis and the construction of non-linear active shape models, in: T. Cootes, C. Taylor (Eds.), Proceedings of the British Machine Vision Conference, 2001, pp. 23-32.
[30] M.E. Tipping, Sparse kernel principal component analysis, in: Advances in Neural Information Processing Systems 13, Vancouver, December 2001.; M.E. Tipping, Sparse kernel principal component analysis, in: Advances in Neural Information Processing Systems 13, Vancouver, December 2001.
[31] S. Roweis, EM algorithms for PCA and SPCA, in: M. Jordan, M. Kearns, S. Solla (Eds.), Advances in Neural Information Processing Systems, Vol. 10, MIT Press, Cambridge, MA, 1998, pp. 626-632.; S. Roweis, EM algorithms for PCA and SPCA, in: M. Jordan, M. Kearns, S. Solla (Eds.), Advances in Neural Information Processing Systems, Vol. 10, MIT Press, Cambridge, MA, 1998, pp. 626-632.
[32] M.E. Tipping, C.M. Bishop, Probabilistic principal component analysis, Technical Report Woe-19, Neural Computing Research Group, Aston University, UK, 1997.; M.E. Tipping, C.M. Bishop, Probabilistic principal component analysis, Technical Report Woe-19, Neural Computing Research Group, Aston University, UK, 1997. · Zbl 0924.62068
[33] Werman, M.; Weinshall, D., Similarity and affine invariant distances between 2d point sets, IEEE Trans. Pattern Anal. Mach. Intell., 17, 8, 810-814 (1995)
[34] Dryden, I. L.; Mardia, K. V., Statistical Shape Analysis (1998), Wiley: Wiley Chichester · Zbl 0901.62072
[35] Y. Chen, S. Thiruvenkadam, H. Tagare, F. Huang, D. Wilson, E. Geiser, On the incorporation of shape priors into geometric active contours, in: IEEE Workshop on Variational and Level Set Methods, Vancouver, CA, 2001, pp. 145-152.; Y. Chen, S. Thiruvenkadam, H. Tagare, F. Huang, D. Wilson, E. Geiser, On the incorporation of shape priors into geometric active contours, in: IEEE Workshop on Variational and Level Set Methods, Vancouver, CA, 2001, pp. 145-152.
[36] Rosenblatt, F., Remarks on some nonparametric estimates of a density function, Ann. Math. Stat., 27, 832-837 (1956) · Zbl 0073.14602
[37] Parzen, E., On the estimation of a probability density function and the mode, Ann. Math. Stat., 33, 1065-1076 (1962) · Zbl 0116.11302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.