×

Lebesgue constant for the Strömberg wavelet. (English) Zbl 1025.42019

Let \(S\) be the Strömberg wavelet [J.-O. Strömberg, Harmonic analysis, Conf. in Honor of A. Zygmunt, Chicago 1981, Vol. 2, 475-494 (1983; Zbl 0521.46011)], then \((S_{r,m})_{r,m\in \mathbb Z}\) is an orthonormal basis in \(L^2(\mathbb R),\) where \(S_{r,m}(t)=2^{r/2}S(2^rt-m)\), \(r,m\in\mathbb Z.\) Furthermore, let \(P_{r,m}\) denotes the extension onto \(L^{\infty}(\mathbb R)\) of the partial sum operators for the system \((S_{r,m})_{r,m\in \mathbb Z},\) i.e., \[ P_{s,n}f=\sum \langle f,S_{r,m}\rangle S_{r,m}, \] where \(\langle \cdot,\cdot\rangle\) stands for the scalar product in the Hilbert space \(L^2(\mathbb R)\) and the sum extends over all pairs \((r,m)\) such that \((r,m)\leq(s,n)\) if \(n<\infty\) and \((r,m)<(s,\infty)\) if \(n=\infty.\) Here the notation \((r,m)<(s,n)\) means that either \(r<s\) or \(r=s\) and \(m<n.\)
The main result is the following expression for the Lebesgue constant \(\|P_{r,m}\|_{\infty}:\) \[ \|P_{r,m}\|_{\infty}=2+(2-\sqrt{3})^2 \text{ if } r,m\in\mathbb Z, \]
\[ \|P_{r,\infty}\|_{\infty}=2 \text{ if } r\in\mathbb Z. \]

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citations:

Zbl 0521.46011
Full Text: DOI

References:

[1] de Boor, C., The inverse of a totally positive bi-infinite matrix, Trans. Amer. Math. Soc., 274, 1, 45-58 (1982) · Zbl 0502.47014
[2] de Boor, C., On the convergence of odd-degree spline interpolation, J. Approx. Theory, 1, 452-463 (1968) · Zbl 0174.09902
[3] Ciesielski, Z., Properties of the orthonormal Franklin system, Studia Math., 23, 141-157 (1963) · Zbl 0113.27204
[4] Ciesielski, Z., The \(C(I)\) norms of orthogonal projections onto subspaces of polygonals, Trudy Mat. Steklov Inst., 134, 366-369 (1975) · Zbl 0325.42010
[5] Kashin, B. S.; Saakyan, A. A., Translations of Mathematical Monographs, Orthogonal Series, Vol. 75 (1989), Amer. Math. Soc: Amer. Math. Soc Providence, RI · Zbl 0668.42011
[6] Oskolkov, K. I., The upper bounds of the norms of orthogonal projections onto subspaces of polygonals, (Ciesielski, Z., Approximation Theory, Vol. 4 (1979), Banach Center Publications: Banach Center Publications Warszawa), 177-183 · Zbl 0436.49033
[7] Strömberg, J.-O., A modified Franklin system and higher order spline systems on \(R^n\) as unconditional bases for Hardy spaces, (Beckman, W.; Calderón, A. P.; Fefferman, R.; Jones, P. W., Conference in Harmonic Analysis in Honor of A. Zygmund, Vol. II (1983), Wadsworth: Wadsworth Belmont), 475-493
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.