×

Sequences separating fibers in the spectrum of \(H^{\infty}\). (English) Zbl 1030.46061

In the paper some aspects of the topological structure of the maximal ideal space \(M(H^\infty) \) of the uniform algebra \(H^\infty \) of bounded analytic functions on the open unit disk in the complex plane are investigated. The authors discuss properties of the cluster points of a sequence \((x_n)_{n} \) in \(M(H^\infty). \) In general it is assumed that the points \(x_n \) are in different fibers \(M_{\lambda_n}, \) the set of all \( m\in M(H^\infty) \) such that \( id (m)=\lambda_n \) where \(id \) is the identity function on the unit disk and \( \lambda_n \) are points on the unit circle such that the argument of \( \lambda_n \) tends monotonically to zero.
To give a flavor of the paper we mention two results: (1) If \( x_n \) has trivial Gleason part for each \( n\) then every cluster point of \((x_n)_{n} \) has a strictly maximal support set, and (2) if \( x_n \) has non-trivial Gleason part for each \(n \) then every cluster point of \((x_n)_{n} \) has a Gleason part which is homeomorphic to the open unit disk. The paper contains further interesting results along these lines.

MSC:

46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces
54G99 Peculiar topological spaces
30H05 Spaces of bounded analytic functions of one complex variable
Full Text: DOI

References:

[1] Axler, S.; Gorkin, P., Sequences in the maximal ideal space of \(H^∞\), Proc. Amer. Math. Soc., 108, 731-740 (1990) · Zbl 0703.46037
[2] Browder, A., Introduction to Function Algebras (1969), Benjamin: Benjamin New York · Zbl 0199.46103
[3] Budde, P., Support sets and Gleason parts, Michigan Math. J., 37, 367-383 (1990) · Zbl 0738.46026
[4] Carleson, L., Interpolations by bounded analytic functions and the corona problem, Ann. of Math., 76, 547-559 (1962) · Zbl 0112.29702
[5] Decker, E., On the boundary behaviour of singular inner functions, Michigan Math. J., 41, 547-562 (1994) · Zbl 0830.30018
[6] Gamelin, T., Uniform Algebras (1984), Chelsea: Chelsea New York · Zbl 0213.40401
[7] Garnett, J. B., Bounded Analytic Functions (1981), Academic Press: Academic Press New York · Zbl 0469.30024
[8] Gorkin, P., Decompositions of the maximal ideal space of \(L^∞\), Trans. Amer. Math. Soc., 282, 33-44 (1984) · Zbl 0545.30040
[9] Gorkin, P.; Mortini, R., Interpolating Blaschke products and factorization in Douglas algebras, Michigan J. Math., 38, 147-160 (1991) · Zbl 0781.46037
[10] Gorkin, P.; Lingenberg, H.-M.; Mortini, R., Homeomorphic disks in the spectrum of \(H^∞\), Indiana Univ. Math. J., 39, 961-983 (1990) · Zbl 0703.46036
[11] Gorkin, P.; Mortini, R.; Suarez, D., Localisation techniques for division in Douglas algebras, Math. Proc. Royal Irish Acad. A, 101, 49-60 (2001) · Zbl 1032.46068
[12] Hoffman, K., Banach Spaces of Analytic Functions (1988), Dover: Dover New York, reprint of 1962 · Zbl 0117.34001
[13] Hoffman, K., Bounded analytic functions and Gleason parts, Ann. of Math., 86, 74-111 (1967) · Zbl 0192.48302
[14] Ishii, T.; Izuchi, K., Trivial points in the maximal ideal space of \(H^∞\), Houston J. Math., 25, 67-77 (1999) · Zbl 0982.46036
[15] Ishii, T.; Izuchi, K., Trivial points in the maximal ideal space of \(H^∞\), II, Arch. Math., 77, 407-414 (2001) · Zbl 1211.46059
[16] Izuchi, K., QC-level sets and quotients of Douglas algebras, J. Funct. Anal., 65, 293-308 (1986) · Zbl 0579.46037
[17] Izuchi, K., Countably generated Douglas algebras, Trans. Amer. Math. Soc., 299, 171-192 (1987) · Zbl 0608.46028
[18] Izuchi, K., Interpolating sequences in the maximal ideal space of \(H^∞\), II, Operator Theory, Adv. Appl., 59, 221-233 (1992) · Zbl 0799.46062
[19] Kishi, K., A set in the fiber of \(M(H^∞)\) over the point 1, Arch. Math., 66, 417-419 (1996) · Zbl 0859.46036
[20] Leibowitz, G., Lectures on Complex Function Algebras (1970), Scott-Foresman: Scott-Foresman Glenview, IL · Zbl 0219.46037
[21] Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207, 391-405 (1975) · Zbl 0319.42006
[22] Sarason, D., The Shilov and Bishop decompositions of \(H^∞+C\), (Conference on Harmonic Analysis in Honor of A. Zygmund, Chicago, Illinois, 1981 Wadsworth Math. Series, Belmont, California, Vol. 2 (1983)), 461-474 · Zbl 0504.46038
[23] Schark, I. J., Maximal ideals in an algebra of bounded analytic functions, J. Math. Mech., 10, 735-746 (1961) · Zbl 0139.30402
[24] Suarez, D., Čech cohomology and covering dimension for the \(H^∞\) maximal ideal space, J. Funct. Anal., 123, 233-263 (1994) · Zbl 0808.46076
[25] Suarez, D., Trivial Gleason parts and the topological stable rank of \(H^∞\), Amer. J. Math., 118, 879-904 (1996) · Zbl 0858.46042
[26] Suarez, D., Maximal Gleason parts for \(H^∞\), Michigan Math. J., 45, 55-72 (1998) · Zbl 0961.46039
[27] Suarez, D., Homeomorphic analytic maps into the maximal ideal space of \(H^∞\), Canad. Math. J., 51, 147-163 (1999) · Zbl 0999.30034
[28] Weiss, M. L., Some separation properties in sup-norm algebras of continuous functions, (Birtel, Function Algebras, Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965 (1966), Scott-Foresman: Scott-Foresman Chicago, IL), 93-97 · Zbl 0203.13101
[29] Wolff, T. H., Two algebras of bounded functions, Duke Math. J., 49, 321-328 (1982) · Zbl 0494.30042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.