×

Higher fundamental groupoids for spaces. (English) Zbl 1023.55007

The author defines fundamental \(n\)-groupoids for topological spaces.
Section 1 deals with the structure of the standard path functor considering the involutive lattice structure of the interval \([0,1]\).
The functor of Moore paths, \(\mathbb{P}\), has a similar structure but an associative concatenation. Thus, Section 2 starts with the space \(\mathbb{P}X\) of Moore paths, which produces a cubical object with associative concatenations. A quotient \(\mathcal{P}X\) of the underlying set \(|\mathbb{P}X|\) gives a groupoid called the groupoid of strongly reduced paths. From this, a cubical \(\omega\)-groupoid is derived, and then, the fundamental \(\omega\)-groupoid \(\Pi_{\omega}X\). Finally, the fundamental \(n\)-groupoid is obtained by applying the ‘reflector’ of \(n\)-groupoids.
In section 3, the fundamental category of a directed topological space [see M. Grandis, Directed Homotopy Theory, I. The fundamental category, Cah. Topologie Géom. Différ. Catég., to appear. Preprint http://arXiv.org/abs/math.AT/0111048] is extended to any dimension, following a treatment parallel to the previous section.
The last section compares these constructions with the fundamental categories of (symmetric) simplicial sets, introduced in previous works by the author [see Appl. Categ. Struct. 10, 99-155 (2002; Zbl 0994.55011) and Cah. Topologie Géom. Différ. Catég. 42, 101-136 (2001; Zbl 1006.18014)].

MSC:

55P99 Homotopy theory
18G55 Nonabelian homotopical algebra (MSC2010)
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
55U10 Simplicial sets and complexes in algebraic topology
55P65 Homotopy functors in algebraic topology
Full Text: DOI

References:

[1] F.A.A. Al-Agl, R. Brown, R. Steiner, Multiple categories: The equivalence of a globular and a cubical approach, Adv. Math., to appear, http://arXiv.org/abs/math.CT/0007009; F.A.A. Al-Agl, R. Brown, R. Steiner, Multiple categories: The equivalence of a globular and a cubical approach, Adv. Math., to appear, http://arXiv.org/abs/math.CT/0007009 · Zbl 1013.18003
[2] Brown, R.; Hardie, K. A.; Kamps, K. H.; Porter, T., A homotopy double groupoid of a Hausdorff space, Th. Appl. Categ., 10, 2, 71-93 (2002), (electronic) http://tac.mta.ca/tac/ · Zbl 0986.18010
[3] Batanin, M. A., Monoidal globular categories as a natural environment for the theory of weak \(n\)-categories, Adv. Math., 136, 39-103 (1997) · Zbl 0912.18006
[4] Brown, R.; Higgins, P. J., On the algebra of cubes, J. Pure Appl. Algebra, 21, 233-260 (1981) · Zbl 0468.55007
[5] Brown, R.; Higgins, P. J., Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra, 22, 11-41 (1981) · Zbl 0475.55009
[6] Curtis, E. B., Simplicial homotopy theory, Adv. Math., 6, 107-209 (1971) · Zbl 0225.55002
[7] L. Fajstrup, E. Goubault, M. Raussen, Algebraic topology and concurrency, Preprint, 1999; L. Fajstrup, E. Goubault, M. Raussen, Algebraic topology and concurrency, Preprint, 1999 · Zbl 1099.55003
[8] Gabriel, P.; Zisman, M., Calculus of Fractions and Homotopy Theory (1967), Springer-Verlag: Springer-Verlag Berlin · Zbl 0186.56802
[9] Gaucher, P., Homotopy invariants of higher dimensional categories and concurrency in computer science, (Geometry and Concurrency. Geometry and Concurrency, Math. Structures Comput. Sci., 10 (2000)), 481-524 · Zbl 0956.68097
[10] P. Gaucher, E. Goubault, Topological deformation of higher dimensional automata, Preprint, http://www-irma.u-strasbg.fr/ gaucher/diCW.ps; P. Gaucher, E. Goubault, Topological deformation of higher dimensional automata, Preprint, http://www-irma.u-strasbg.fr/ gaucher/diCW.ps · Zbl 1030.68058
[11] Goerss, P. G.; Jardine, J. F., Simplicial Homotopy Theory (1999), Birkhäuser: Birkhäuser Basel · Zbl 0949.55001
[12] Goubault, E., Geometry and concurrency: A user’s guide, (Geometry and Concurrency. Geometry and Concurrency, Math. Structures Comput. Sci., 10 (2000)), 411-425 · Zbl 0956.68517
[13] Grandis, M., Cubical monads and their symmetries, Proc. of the Eleventh Intern. Conf. on Topology, Trieste 1993. Proc. of the Eleventh Intern. Conf. on Topology, Trieste 1993, Rend. Istit. Mat. Univ. Trieste, 25, 223-262 (1993) · Zbl 0834.55012
[14] Grandis, M., Categorically algebraic foundations for homotopical algebra, Appl. Categ. Structures, 5, 363-413 (1997) · Zbl 0906.55015
[15] Grandis, M., Higher fundamental functors for simplicial sets, Cahiers Topologie Géom. Différentielle Catégoriques, 42, 101-136 (2001) · Zbl 1006.18014
[16] Grandis, M., Finite sets and symmetric simplicial sets, Theory Appl. Categ., 8, 8, 244-252 (2001), (electronic) http://tac.mta.ca/tac/ · Zbl 0981.18014
[17] Grandis, M., An intrinsic homotopy theory for simplicial complexes, with applications to image analysis, Appl. Categ. Structures, 10, 99-155 (2002) · Zbl 0994.55011
[18] M. Grandis, Directed homotopy theory, I. The fundamental category, Cahiers Topologie Géom. Diff. Catégoriques, to appear. Dip. Mat. Univ. Genova, Preprint 443 (October 2001), http://www.dima.unige.it/ grandis/; M. Grandis, Directed homotopy theory, I. The fundamental category, Cahiers Topologie Géom. Diff. Catégoriques, to appear. Dip. Mat. Univ. Genova, Preprint 443 (October 2001), http://www.dima.unige.it/ grandis/
[19] Hardie, K. A.; Kamps, K. H.; Kieboom, R. W., A homotopy 2-groupoid of a Hausdorff space, Appl. Categ. Structures, 8, 209-234 (2000) · Zbl 0966.55010
[20] Hardie, K. A.; Kamps, K. H.; Kieboom, R. W., A homotopy bigroupoid of a topological space, Appl. Categ. Structures, 9, 311-327 (2001) · Zbl 0987.18006
[21] May, J. P., Simplicial Objects in Algebraic Topology (1967), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0165.26004
[22] Spanier, E., Algebraic Topology (1966), McGraw-Hill: McGraw-Hill New York · Zbl 0145.43303
[23] Z. Tamsamani, Equivalence de la théorie homotopique des \(nn\); Z. Tamsamani, Equivalence de la théorie homotopique des \(nn\)
[24] Tamsamani, Z., Sur des notions de \(n\)-catégorie et \(n\)-groupoı̈de non strictes via des ensembles multi-simpliciaux, \(K\)-Theory, 16, 51-99 (1999) · Zbl 0934.18008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.