×

Integral equations via saddle point problems for time-harmonic Maxwell’s equations. (English) Zbl 1016.65110

The authors propose and study a new system of integral equations for solving obstacle scattering by time-harmonic electromagnetic waves, with particular emphasis on impedance boundary conditions.
The space \(\mathcal W\) of incoming and outgoing solutions of Maxwell’s equations is introduced, on which a suitable quadratic functional depending on a boundary data is defined. It is proved that the minimum of this functional is reached at a point that coincides with the outgoing solution of Maxwell’s equation satisfying a boundary condition linked to the data boundary. Using a parametrization of \(\mathcal W\) by means of currents, it is shown that the system has an interpretation as a minimization problem with constraints. Introducing a Lagrange multiplier and the associated Lagrangian, the optimality conditions allow to recover the system previously obtained.
One interesting feature of the new system of equations, comparing to the classical ones, is that the space of solutions is \(L^2\). A penalization procedure may be used to get more coercivity on the multiplier, even if the inf-sup condition is already true for the nonpenalized formulation. This coercive framework might appear as unusual when compared with the standard theory of integral operators for electromagnetism. However, the proof of well-posedness of the weak formulation is based on some well known fundamental properties of the exterior Calderón projectors for Maxwell’s equations.
An iterative algorithm to solve the system is proposed, and its convergence is proved. Other numerical issues are also discussed. In order to give a better understanding of the new system, the spectrum of the integral operator in the special case of a spherical scatterer is analytically determined.
The method presented in this work has some advantages from the computational point of view when compared to more classical integral equations like electric field integral equation or magnetic or combined field integral equation.

MSC:

65R20 Numerical methods for integral equations
65F05 Direct numerical methods for linear systems and matrix inversion
78A45 Diffraction, scattering
Full Text: DOI

References:

[1] T. Abboud, T. Sayah, Potentiels retardés pour les Equations de Maxwell avec condition d’impédance généralisée, Technical Report R.I. 387, Ecole Polytechnique, France, 2000.; T. Abboud, T. Sayah, Potentiels retardés pour les Equations de Maxwell avec condition d’impédance généralisée, Technical Report R.I. 387, Ecole Polytechnique, France, 2000.
[2] Antoine, X.; Barucq, H.; Bendali, A., Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shapes, J. Math. Anal. Appl., 229, 184-211 (2000) · Zbl 0923.35179
[3] Bartoli, N.; Collino, F., Integral equations via saddle point problems for the 2-D electromagnetic problems, M2AN. Mathematical Modelling and Numerical Analysis, 34, 5, 1023-1050 (2000) · Zbl 0964.78005
[4] A. Bendali, Boundary element solution of scattering problems relative to a generalized impedance boundary condition, Proceedings of the Boca Raton Cerfacs Conference, London, New York, 1999.; A. Bendali, Boundary element solution of scattering problems relative to a generalized impedance boundary condition, Proceedings of the Boca Raton Cerfacs Conference, London, New York, 1999. · Zbl 0937.78015
[5] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, No. 15, Springer Series in Computational Mathematics, Springer, Berlin, 1991.; F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, No. 15, Springer Series in Computational Mathematics, Springer, Berlin, 1991. · Zbl 0788.73002
[6] M. Cessenat, Mathematical Methods in Electromagnetism, No. 41, Series on Advances in Mathematics for Applied Sciences, World-Scientific, Singapore, 1996.; M. Cessenat, Mathematical Methods in Electromagnetism, No. 41, Series on Advances in Mathematics for Applied Sciences, World-Scientific, Singapore, 1996. · Zbl 0917.65099
[7] Chen, G.; Zhou, J., Boundary Element Methods (1992), Academic Press: Academic Press New York · Zbl 0842.65071
[8] Collino, F.; Ghanemi, S.; Joly, P., Domain decomposition method for the Helmholtz equationa general presentation, Comput. Methods Appl. Mech. Eng., 184, 2-4, 171-211 (2000) · Zbl 0965.65134
[9] Colton, D.; Kress, R., Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, Vol. 93 (1992), Springer: Springer Berlin · Zbl 0760.35053
[10] Darve, E., The fast multipole methodnumerical implementation, J. Comput. Phys., 160, 1, 195-240 (2000) · Zbl 0974.78012
[11] Després, B., Fonctionnelle quadratique et équations intégrales pour les équations de Maxwell en domaine extérieur, Comptes Rendus de l’Académie des Sciences, Paris, Série I, 323, 547-552 (1996) · Zbl 0858.65126
[12] Després, B., Fonctionnelle quadratique et Équations Integrales pour les problèmes d’onde harmonique en domaine extérieur, M2AN. Mathematical Modelling and Numerical Analysis, 31, 679-732 (1997) · Zbl 0890.65131
[13] B. Després, Quadratic Functional and Integral Equations for Harmonic Wave Equations, in Mathematical and Numerical Aspects of Wave Propagation (Golden, CO, 1998), SIAM, Philadelphia, 1998, pp. 56-64.; B. Després, Quadratic Functional and Integral Equations for Harmonic Wave Equations, in Mathematical and Numerical Aspects of Wave Propagation (Golden, CO, 1998), SIAM, Philadelphia, 1998, pp. 56-64. · Zbl 0942.35013
[14] B. Després, P. Joly, J.E. Roberts, A domain decomposition method for the harmonic Maxwell’s equations, in: Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1990.; B. Després, P. Joly, J.E. Roberts, A domain decomposition method for the harmonic Maxwell’s equations, in: Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, North-Holland, Amsterdam, 1990.
[15] Després, B.; Stupfel, B., A domain decomposition for the solution of large electromagnetic scattering problem, J. Electromagn. Waves Appl., 13, 11, 1553-1568 (1999) · Zbl 1066.78512
[16] Epton, M.; Dembart, B., Multipole translation theory for the three-dimensional Laplace and Helmholtz equations, SIAM J. Sci. Comput., 16, 865-897 (1995) · Zbl 0852.31006
[17] Hartman, P.; Wilcox, C., On solutions of the Helmholtz equations in exterior domains, Math. Z., 75, 228-255 (1961) · Zbl 0096.07601
[18] Hsiao, G. C.; Kleinman, R. F., Mathematical foundations for error estimations in numerical solutions of integral equations in electromagnetism, IEEE Trans. Antennas Propag., 45, 3, 316-328 (1997) · Zbl 0945.78012
[19] Kleinman, R. E.; Van den Berg, P. M., Iterative Methods for Solving Integral Equations (1988), Elsevier: Elsevier Amsterdam · Zbl 0762.65094
[20] J.C. Nédelec, Cours de l’école d’été d’analyse numérique, Technical Report, CEA-EDF-IRIA, 1977.; J.C. Nédelec, Cours de l’école d’été d’analyse numérique, Technical Report, CEA-EDF-IRIA, 1977.
[21] Pocock, M. D.; Walker, S. P., The complex bi-conjugate gradient solver applied to large electromagnetic scattering problems, computational costs, and costs scaling, IEEE Trans. Antennas Propag., 45, 1, 140-146 (1997)
[22] Reed, M.; Simon, M., Scattering Theory (1979), Academic Press: Academic Press New York · Zbl 0405.47007
[23] T.K. Sarkar, Application of conjugate gradient method to electromagnetics and signal analysis, in: From Reaction Concept to Conjugate Gradient: Have we Made any Progress?, Elsevier, Amsterdam, 1988.; T.K. Sarkar, Application of conjugate gradient method to electromagnetics and signal analysis, in: From Reaction Concept to Conjugate Gradient: Have we Made any Progress?, Elsevier, Amsterdam, 1988.
[24] T.B.A. Senior, J.L. Volakis, Approximate Boundary Conditions in Electromagnetism, No. 41, in: IEEE Electromagnetism Waves Series, The Institution of Electric Engineers, London, 1995.; T.B.A. Senior, J.L. Volakis, Approximate Boundary Conditions in Electromagnetism, No. 41, in: IEEE Electromagnetism Waves Series, The Institution of Electric Engineers, London, 1995. · Zbl 0828.73001
[25] Song, J.; Lu, C. C.; Chew, W. C., Multilevel Fast Multipole Algorithm for Electromagnetic Scattering by Large Complex Objects, IEEE Trans. Antennas Propag., 45, 1488-1493 (1997)
[26] Stupfel, B., A hybrid finite element method and integral equation domain decomposition method for the solution of the 3-D scattering problem, J. Comput. Phys., 172, 2, 451-471 (2001) · Zbl 0992.78014
[27] Stupfel, B.; Despres, B., A domain decomposition method for the solution of large electromagnetic scattering problems, J. Electromagn. Waves Appl., 13, 1553-1568 (1999) · Zbl 1066.78512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.