×

A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations. (English) Zbl 1013.65088

Summary: We introduce two types of finite difference methods to compute the L-solution and the proper viscosity solution recently proposed by the second author for semi-discontinuous solutions to a class of Hamilton-Jacobi (HJ) equations. By regarding the graph of the solution as the zero level curve of a continuous function in one dimension higher, we can treat the corresponding level set equation using the viscosity theory introduced by M. G. Crandall and P.-L. Lions [Trans. Am. Math. Soc. 277, 1-42 (1983; Zbl 0599.35024)]. However, we need to pay special attention both analytically and numerically to prevent the zero level curve from overturning so that it can be interpreted as the graph of a function.
We demonstrate our Lax-Friedrichs type numerical methods for computing the L-solution using its original level set formulation. In addition, we couple our numerical methods with a singular diffusive term which is essential to computing solutions to a more general class of HJ equations that includes conservation laws. With this singular viscosity, our numerical methods do not require the divergence structure of equations and do apply to more general equations developing shocks other than conservation laws. These numerical methods are generalized to higher order accuracy using weighted essentially non-oscillatory local Lax-Friedrichs methods as developed recently by G.-S. Jiang and D. Peng [SIAM J. Sci. Comput. 21, No. 6, 2126-2143 (2000; Zbl 0957.35014)]. We verify that our numerical solutions approximate the proper viscosity solutions obtained by Y. Giga [Commun. Pure Appl. Math. 55, No. 4, 431-480 (2002; Zbl 1028.35044)].
Finally, since the solution of scalar conservation law equations can be constructed using existing numerical techniques, we use it to verify that our numerical solution approximates the entropy solution.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
70H20 Hamilton-Jacobi equations in mechanics
35L60 First-order nonlinear hyperbolic equations
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
Full Text: DOI

References:

[1] Rahul Pandharipande, Equivariant Chow rings of \?(\?),\?\?(2\?+1), and \?\?(4), J. Reine Angew. Math. 496 (1998), 131 – 148. · Zbl 0905.14026 · doi:10.1515/crll.1998.025
[2] Guy Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, Nonlinear Anal. 20 (1993), no. 9, 1123 – 1134. · Zbl 0816.35081 · doi:10.1016/0362-546X(93)90098-D
[3] Guy Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 17, Springer-Verlag, Paris, 1994 (French, with French summary). · Zbl 0819.35002
[4] Olivier Guès, Ondes oscillantes simples quasilinéaires, Journées ”Équations aux Dérivées Partielles” (Saint Jean de Monts, 1989) École Polytech., Palaiseau, 1989, pp. Exp. No. IX, 8 (French). · Zbl 0697.35085
[5] C. Carathéodory, Calculus of variations and partial differential equations of the first order. Part I: Partial differential equations of the first order, Translated by Robert B. Dean and Julius J. Brandstatter, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. C. Carathéodory, Calculus of variations and partial differential equations of the first order. Part II: Calculus of variations, Translated from the German by Robert B. Dean, Julius J. Brandstatter, translating editor, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1967.
[6] M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. 43 (1984), no. 167, 1 – 19. · Zbl 0556.65076
[7] Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1 – 42. · Zbl 0599.35024
[8] Lawrence C. Evans, A geometric interpretation of the heat equation with multivalued initial data, SIAM J. Math. Anal. 27 (1996), no. 4, 932 – 958. · Zbl 0862.35043 · doi:10.1137/S0036141094275439
[9] Mi-Ho Giga and Yoshikazu Giga, Crystalline and level set flow — convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane, Free boundary problems: theory and applications, I (Chiba, 1999) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 13, Gakkōtosho, Tokyo, 2000, pp. 64 – 79. · Zbl 0957.35122
[10] Mi-Ho Giga, Yoshikazu Giga, and Ryo Kobayashi, Very singular diffusion equations, Advanced Studies in Pure Mathematics 31, 2001, pp. 93-125. · Zbl 1002.35074
[11] Y. Giga, S. Goto, H. Ishii, and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 (1991), no. 2, 443 – 470. · Zbl 0836.35009 · doi:10.1512/iumj.1991.40.40023
[12] Yoshikazu Giga, Shocks and very strong vertical diffusion, To appear, Proc. of international conference on partial differential equations in celebration of the seventy fifth birthday of Professor Louis Nirenberg, Taiwan, 2001. · Zbl 1211.35194
[13] -, Viscosity solutions with shocks, Hokkaido Univ. Preprint Series in Math. (2001), no. 519.
[14] Yoshikazu Giga and Moto-Hiko Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems, Comm. Partial Differential Equations 26 (2001), no. 5-6, 813-839. · Zbl 1005.49025
[15] Ami Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), no. 3, 357 – 393. · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[16] Ami Harten, Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys. 71 (1987), no. 2, 231 – 303. · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[17] J. Helmsen, E. Puckett, P. Colella, and M. Dorr, Two new methods for simulating photolithography development in 3d, SPIE 2726, 1996, pp. 253-261.
[18] Hitoshi Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo Univ. 28 (1985), 33 – 77. · Zbl 0937.35505
[19] Hitoshi Ishii, Existence and uniqueness of solutions of Hamilton-Jacobi equations, Funkcial. Ekvac. 29 (1986), no. 2, 167 – 188. · Zbl 0614.35011
[20] Hitoshi Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), no. 2, 369 – 384. · Zbl 0697.35030 · doi:10.1215/S0012-7094-87-05521-9
[21] Guang-Shan Jiang and Danping Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (2000), no. 6, 2126 – 2143. · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[22] J. Łuczka, Application of statistical mechanics to stochastic transport, Phys. A 274 (1999), no. 1-2, 200 – 215. Applications of statistical physics (Budapest, 1999). · doi:10.1016/S0378-4371(99)00314-3
[23] Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. · Zbl 0268.35062
[24] Chi-Tien Lin and Eitan Tadmor, High-resolution nonoscillatory central schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (2000), no. 6, 2163 – 2186. · Zbl 0964.65097 · doi:10.1137/S1064827598344856
[25] Stanley Osher, A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations, SIAM J. Math. Anal. 24 (1993), no. 5, 1145 – 1152. · Zbl 0804.35021 · doi:10.1137/0524066
[26] Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12 – 49. · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[27] Stanley Osher and Chi-Wang Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal. 28 (1991), no. 4, 907 – 922. · Zbl 0736.65066 · doi:10.1137/0728049
[28] Danping Peng, Barry Merriman, Stanley Osher, Hongkai Zhao, and Myungjoo Kang, A PDE-based fast local level set method, J. Comput. Phys. 155 (1999), no. 2, 410 – 438. · Zbl 0964.76069 · doi:10.1006/jcph.1999.6345
[29] J.A. Sethian, Fast marching level set methods for three dimensional photolithography development, SPIE 2726, 1996, pp. 261-272.
[30] Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes. II, J. Comput. Phys. 83 (1989), no. 1, 32 – 78. · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[31] Panagiotis E. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations 59 (1985), no. 1, 1 – 43. · Zbl 0536.70020 · doi:10.1016/0022-0396(85)90136-6
[32] Yen-Hsi Richard Tsai, Rapid and accurate computation of the distance function using grids, UCLA CAM Report 00 (2000), no. 36. · Zbl 0997.65090
[33] John N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat. Control 40 (1995), no. 9, 1528 – 1538. · Zbl 0831.93028 · doi:10.1109/9.412624
[34] S. T. Venkataraman and T. Iberall , Dextrous robot hands, Springer-Verlag, New York, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.