×

Zeta function continuation and the Casimir energy on odd and even dimensional spheres. (English) Zbl 0763.58030

With an eye to applications in quantum field theory this paper deals with the evaluation of the Casimir energy on spheres \(S^ N\). The main tool is the zeta function and its well-established analytic properties. In particular the zeta function is explicitly evaluated at \(-1/2\), yielding directly the Casimir energy when the operator involved in defining the zeta function is essentially the Laplacian (modified by the Ricci scalar). It is shown that under certain conditions (vanishing of the trace anomaly) the Casimir energy as well as the entire energy-momentum tensor may be evaluated in this manner.

MSC:

58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
35P20 Asymptotic distributions of eigenvalues in context of PDEs
Full Text: DOI

References:

[1] Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge: Cambridge University Press 1982 · Zbl 0476.53017
[2] Gilkey, P.B.: Invariance theory, the heat equation and the Atiyah-Singer index theorem. Publish or Perish 1984 · Zbl 0565.58035
[3] Hawking, S.W.: Zeta function regularisation of path integrals in curved spacetime. Commun. Math. Phys.55, 133–148 (1977) · Zbl 0407.58024 · doi:10.1007/BF01626516
[4] Dowker, J.S., Banach, R.: Quantum field theory on Clifford-Klein space-times. The effective Lagrangian and vacuum stress-energy tensor. J. Phys. A11, 2255–2284 (1978) · doi:10.1088/0305-4470/11/11/012
[5] DeWitt, B.: The dynamical theory of groups and fields. In: Relativity, Groups and Topology DeWitt, B., DeWitt, C. (eds.). London: Gordon and Breach 1965 · Zbl 0169.57101
[6] Candelas, P., Weinberg, S.: Nucl. Phys. B237, 397 (1984) · doi:10.1016/0550-3213(84)90001-4
[7] Birmingham, D., Sen, S.: The Candelas-Weinberg model for spacesM{\(\times\)}S 2N. Ann. Phys.172, 451–482 (1986) · Zbl 0601.53076 · doi:10.1016/0003-4916(86)90190-9
[8] Moss, I.G.: Class. Quant. Gravity6, 759 (1989) · Zbl 0697.58053 · doi:10.1088/0264-9381/6/5/017
[9] McAvity, D.M., Osborn, H.: A DeWitt expansion of the heat kernel for manifolds with a boundary. Class. Quant. Gravity8, 603–638 (1991) · Zbl 0716.58029 · doi:10.1088/0264-9381/8/4/008
[10] Amsterdamski, P., Berkin, A.L., O’Connor, D.J.:b 8 ”Hamidew” coefficient for a scalar field. Class. Quant. Gravity6, 1981–1991 (1989) · Zbl 0706.58071 · doi:10.1088/0264-9381/6/12/024
[11] Avramidi, G.: The covariant technique for the calculation of heat kernel asymptotic expansion. Phys. Lett.B238, 92–97 (1990) · doi:10.1016/0370-2693(90)92105-R
[12] Avramidi, G.: A covariant technique for the calculation of the one loop effective action. Nucl. Phys.B355, 712–754 (1991) · doi:10.1016/0550-3213(91)90492-G
[13] Patterson, S.J.: An introduction to the theory of the Riemann zeta function. Cambridge: Cambridge University Press 1988 · Zbl 0641.10029
[14] Ivic, A.: The Riemann zeta-function: The theory of the Riemann zeta-function with applications. New York: Wiley 1985
[15] Titchmarsh, E.C.: The theory of the Riemann zeta-function. Oxford: Oxford University Press 1951 · Zbl 0042.07901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.