×

Fonction zêta des hauteurs des surfaces de Hirzebruch dans le cas fonctionnel. (The height zeta-function of a Hirzebruch surface over a function field). (French) Zbl 1006.11032

Let \(k\) be a global field of positive characteristic, and let \(q\) stand for the cardinality of its field of constants. Given a positive integer \(m\), let \(V_m\) be the “Hirzebruch surface” defined by the equation \(y_1^mx_0= y_0^mx_1\) in the homogeneous coordinates \((x_0: x_1: x_2, y_0:y_1)\) on \(\mathbb{P}_k^2\times \mathbb{P}_k^1\), and let \(U\) be the open subset of \(V_m\) obtained by removing the line \(x_1= x_2= 0\). The author proves that the height zeta-function \(Z(s)= \sum_{x\in U(k)} H(x)^{-s}\), associated to the explicitly defined anti-canonical Arakelov height \(H\) on \(V_m\), is a rational function of \(q^{-s}\) having a second-order pole at \(s=1\), determines the residue as this pole, and points out that his results agree “with a version of Manin’s conjecture on the distribution of points of bounded height on almost-Fano varieties” over a function field \(k\) as above.
Reviewer: B.Z.Moroz (Bonn)

MSC:

11G50 Heights
14G05 Rational points
14G25 Global ground fields in algebraic geometry
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
Full Text: DOI

References:

[1] Batyrev, V. V.; Tschinkel, Y., Rational points of bounded height on compactifications of anisotropic tori, Internat. Math. Res. Not., 12, 591-635 (1995) · Zbl 0890.14008
[2] Batyrev, V. V.; Tschinkel, Y., Manin’s conjecture for toric varieties, J. Algebraic Geom., 7, 15-53 (1998) · Zbl 0946.14009
[3] Batyrev, V. V.; Tschinkel, Y., Rational points on some Fano cubic bundles, C. R. Acad. Sci. Paris, 323, 41-46 (1996) · Zbl 0879.14007
[4] Billard, H., Répartition des points rationnels des surfaces géométriquement réglées rationnelles, Astérisque, 251, 79-89 (1998) · Zbl 1007.11039
[5] Franke, J.; Manin, Y.; Tschinkel, Y., Rational points of bounded height on Fano varieties, Invent. Math., 95, 421-435 (1989) · Zbl 0674.14012
[6] Lang, S., Fundamentals of Diophantine Geometry (1983), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0528.14013
[7] E. Peyre, Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie, prépublication.; E. Peyre, Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie, prépublication.
[8] Peyre, E., Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J., 79, 101-218 (1995) · Zbl 0901.14025
[9] Peyre, E., Étude asymptotique des points de hauteur bornée, Notes de l’école d’été sur les variétés toriques (2000)
[10] Salberger, P., Tamagawa measure on universal torsors and points of bounded height on Fano varieties, Astérisque, 251, 91-258 (1998) · Zbl 0959.14007
[11] Schanuel, S. H., Heights in number fields, Bull. Soc. Math. France, 107, 433-449 (1979) · Zbl 0428.12009
[12] Silverman, J. H., The theory of height functions, (Cornell, G.; Silverman, J. H., Arithmetic Geometry (1986), Springer-Verlag: Springer-Verlag Berlin/New York), 151-166 · Zbl 0604.14022
[13] A. Weil, Basic Number Theory, Springer-Verlag, Berlin/New York, 1967.; A. Weil, Basic Number Theory, Springer-Verlag, Berlin/New York, 1967. · Zbl 0176.33601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.