×

A generating function technique for Beatty sequences and other step sequences. (English) Zbl 1044.11009

The author presents a technique for expressing generating functions of sequences of integers defined using a real parameter \(x\), as for instance \(\sum_{n=1}^\infty z^{\lfloor n/x\rfloor}\), \(\sum_{n=1}^\infty \lfloor{n\over x}+1\rfloor\), etc.
The main theorem of the paper says: Let \(g(x,n)\), with \(x\in{\mathbb R}^+\), be a simple step complex valued function for each \(n\). Let \(\sum_{n=1}^\infty V_{(0,x)}(g(\cdot,n))<\infty\) for each \(x\), where \(V_I(g)\) denotes the variation of \(g\) on the interval \(I\). Let \(D\) be any set containing \(\{r; g(\cdot,n)\text{ is not continuous at }r\) for some \(n\)

MSC:

11B83 Special sequences and polynomials
05A15 Exact enumeration problems, generating functions
05A17 Combinatorial aspects of partitions of integers
11B34 Representation functions
11B75 Other combinatorial number theory
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M35 Hurwitz and Lerch zeta functions
Full Text: DOI

References:

[1] Bagchi, A.; Reingold, E. M., A naturally occurring function continuous only at irrationals, Amer. Math. Monthly, 89, 411-417 (1982) · Zbl 0542.26002
[2] Böhmer, P. E., Über die Transzendenz Gewisser Dyadischer Brüche, Math. Annal., 96, 367-377 (1927) · JFM 52.0188.02
[3] Borwein, J. M.; Borwein, P. B., On the generating function of the integer part: \([ nα +γ]\), J. Number Theory, 43, 293-318 (1993) · Zbl 0778.11039
[4] Bowman, D., A new generalization of Davison’s theorem, Fibonacci Quart., 26, 40-45 (1988) · Zbl 0702.11005
[5] Brown, T. C., Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull., 36, 15-21 (1993) · Zbl 0804.11021
[6] Erdő:s, P.; Faudree, R.; Győri, E., On the book size of graphs with large minimum degree, Studia Sci. Math. Hungar., 30, 25-46 (1995) · Zbl 0849.05038
[7] Fraenkel, A. S., The bracket function and complementary sets of integers, Canad. J. Math., 21, 6-27 (1969) · Zbl 0172.32501
[8] Fraenkel, A. S., Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, Trans. Amer. Math. Soc., 341, 639-664 (1994) · Zbl 0808.05008
[9] Fraenkel, A. S.; Mushkin, M.; Tassa, U., Determination of [] by its sequence of differences, Canad. Math. Bull., 21, 441-446 (1978) · Zbl 0401.10018
[10] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (1996), Oxford Univ. Press: Oxford Univ. Press New York · Zbl 0020.29201
[11] Mordell, L. J., Irrational power series II, Acta Arith., 11, 181-188 (1965) · Zbl 0133.30201
[12] Newman, M., Irrational power series, Proc Amer. Math. Soc., 11, 699-702 (1960) · Zbl 0104.04401
[13] Rayleigh, J. W., The Theory of Sound (1894), Macmillan: Macmillan London, p. 122-123
[14] Stolarsky, K. B., Certain sequences of Wythoffian matrices and maximal geometric progressions therein, J. Combin. Theory. Ser. A., 68, 361-371 (1994) · Zbl 0814.05069
[15] Stolarsky, K. B.; Porta, H., Half-silvered Mirrors and Wythoff’s Game, Canad. Math. Bull., 33, 119-125 (1990) · Zbl 0711.11006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.